Jarrod Hadfield

University of Edinburgh

> photo_long[c(1:3, 44),]

	У	15	g5	type	photo	person	age	fpub
1	6.631148	34	88	grumpy	4509	peter_k	57	1983
2	3.565574	104	18	happy	4510	peter_k	57	1983
3	4.032787	101	21	grumpy	4511	ally_p	38	2006
44	5.336066	79	43	happy	4550	tom_l	49	1994

Model Syntax

y ~ type + fpub

Model Syntax

y ~ type + fpub

• Set of Simultaneous Equations $E[y[1]] = 1\beta_1 + (type[1] == "grumpy")\beta_2 + fpub[1]\beta_3$ $E[y[2]] = 1\beta_1 + (type[2] == "grumpy")\beta_2 + fpub[2]\beta_3$ $E[y[3]] = 1\beta_1 + (type[3] == "grumpy")\beta_2 + fpub[3]\beta_3$ \vdots $E[y[44]] = 1\beta_1 + (type[44] == "grumpy")\beta_2 + fpub[44]\beta_3$

Model Syntax

- Set of Simultaneous Equations
 $$\begin{split} E[y[1]] &= 1\beta_1 + (type[1] == "grumpy")\beta_2 + fpub[1]\beta_3 + I(fpub[1]^2)\beta_4 \\ E[y[2]] &= 1\beta_1 + (type[2] == "grumpy")\beta_2 + fpub[2]\beta_3 + I(fpub[2]^2)\beta_4 \end{split}$$
- $E[y[3]] = 1\beta_1 + (type[3] == "grumpy")\beta_2 + fpub[3]\beta_3 + I(fpub[3]^2)\beta_4$
- $E[y[44]] = 1\beta_1 + (type[44] == "grumpy")\beta_2 + fpub[44]\beta_3 + I(fpub[44]^2)\beta_4$

Model Syntax

y ~ type + fpub

• Set of Simultaneous Equations $E[y[1]] = 1\beta_1 + (type[1] == "grumpy")\beta_2 + fpub[1]\beta_3 + I(fpub[1]^2)\beta_4$ $E[y[2]] = 1\beta_1 + (type[2] == "grumpy")\beta_2 + fpub[2]\beta_3 + I(fpub[2]^2)\beta_4$ $E[y[3]] = 1\beta_1 + (type[3] == "grumpy")\beta_2 + fpub[3]\beta_3 + I(fpub[3]^2)\beta_4$ \vdots $E[y[44]] = 1\beta_1 + (type[44] == "grumpy")\beta_2 + fpub[44]\beta_3 + I(fpub[44]^2)\beta_4$

Do what you want with your data

Model Syntax

y ~ type + fpub

```
• Set of Simultaneous Equations

E[y[1]] = 1\beta_1 + (type[1]=="grumpy")\beta_2 + fpub[1]\beta_3 + I(fpub[1]^2)\beta_4
E[y[2]] = 1\beta_1 + (type[2]=="grumpy")\beta_2 + fpub[2]\beta_3 + I(fpub[2]^2)\beta_4
E[y[3]] = 1\beta_1 + (type[3]=="grumpy")\beta_2 + fpub[3]\beta_3 + I(fpub[3]^2)\beta_4
\vdots
E[y[44]] = 1\beta_1 + (type[44]=="grumpy")\beta_2 + fpub[44]\beta_3 + I(fpub[44]^2)\beta_4
```

Do what you want with your data but a number you have collected should *never* appear on both the left and right hand side *in any form*.

Model Syntax

y ~ type + fpub

```
• Set of Simultaneous Equations

E[y[1]] = 1\beta_1 + (type[1]=="grumpy")\beta_2 + fpub[1]\beta_3 + I(fpub[1]^2)\beta_4
E[y[2]] = 1\beta_1 + (type[2]=="grumpy")\beta_2 + fpub[2]\beta_3 + I(fpub[2]^2)\beta_4
E[y[3]] = 1\beta_1 + (type[3]=="grumpy")\beta_2 + fpub[3]\beta_3 + I(fpub[3]^2)\beta_4
\vdots
E[y[44]] = 1\beta_1 + (type[44]=="grumpy")\beta_2 + fpub[44]\beta_3 + I(fpub[44]^2)\beta_4
```

Do what you want with your data but a number you have collected should *never* appear on both the left and right hand side *in any form*.

Science MAAAS

> Bateman in Nature: Predation on Offspring Reduces the Potential for Sexual Selection

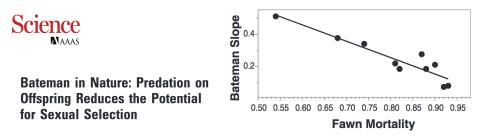
Model Syntax

y ~ type + fpub

```
• Set of Simultaneous Equations

E[y[1]] = 1\beta_1 + (type[1]=="grumpy")\beta_2 + fpub[1]\beta_3 + I(fpub[1]^2)\beta_4
E[y[2]] = 1\beta_1 + (type[2]=="grumpy")\beta_2 + fpub[2]\beta_3 + I(fpub[2]^2)\beta_4
E[y[3]] = 1\beta_1 + (type[3]=="grumpy")\beta_2 + fpub[3]\beta_3 + I(fpub[3]^2)\beta_4
\vdots
E[y[44]] = 1\beta_1 + (type[44]=="grumpy")\beta_2 + fpub[44]\beta_3 + I(fpub[44]^2)\beta_4
```

Do what you want with your data but a number you have collected should *never* appear on both the left and right hand side *in any form*.



Model Syntax

- Set of Simultaneous Equations
 $$\begin{split} E[y[1]] &= 1\beta_1 + (type[1] == "grumpy")\beta_2 + fpub[1]\beta_3 + I(fpub[1]^2)\beta_4 \\ E[y[2]] &= 1\beta_1 + (type[2] == "grumpy")\beta_2 + fpub[2]\beta_3 + I(fpub[2]^2)\beta_4 \end{split}$$
- $E[y[3]] = 1\beta_1 + (type[3] == "grumpy")\beta_2 + fpub[3]\beta_3 + I(fpub[3]^2)\beta_4$
- $E[y[44]] = 1\beta_1 + (type[44] == "grumpy")\beta_2 + fpub[44]\beta_3 + I(fpub[44]^2)\beta_4$

Model Syntax

y ~ type + fpub

• Set of Simultaneous Equations $E[y[1]] = 1\beta_1 + (type[1] == "grumpy")\beta_2 + fpub[1]\beta_3$ $E[y[2]] = 1\beta_1 + (type[2] == "grumpy")\beta_2 + fpub[2]\beta_3$ $E[y[3]] = 1\beta_1 + (type[3] == "grumpy")\beta_2 + fpub[3]\beta_3$ \vdots $E[y[44]] = 1\beta_1 + (type[44] == "grumpy")\beta_2 + fpub[44]\beta_3$

Model Syntax

y ~ type + fpub

- Set of Simultaneous Equations $E[y[1]] = 1\beta_1 + (type[1] == "grumpy")\beta_2 + fpub[1]\beta_3$ $E[y[2]] = 1\beta_1 + (type[2] == "grumpy")\beta_2 + fpub[2]\beta_3$ $E[y[3]] = 1\beta_1 + (type[3] == "grumpy")\beta_2 + fpub[3]\beta_3$ \vdots $E[y[44]] = 1\beta_1 + (type[44] == "grumpy")\beta_2 + fpub[44]\beta_3$
- Compact representation: design matrix and parameter vector $E[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$

Model Syntax

y ~ type + fpub

```
• Set of Simultaneous Equations

E[y[1]] = 1\beta_1 + (type[1]=="grumpy")\beta_2 + fpub[1]\beta_3
E[y[2]] = 1\beta_1 + (type[2]=="grumpy")\beta_2 + fpub[2]\beta_3
E[y[3]] = 1\beta_1 + (type[3]=="grumpy")\beta_2 + fpub[3]\beta_3
\vdots
```

 $E[y[44]] = 1\beta_1 + (type[44] == "grumpy")\beta_2 + fpub[44]\beta_3$

• Compact representation: design matrix and parameter vector $E[\mathbf{y}] = \mathbf{X}_{\boldsymbol{\beta}}$

$$E[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$$

$$E[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$$

• The full model

 $\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma_{e}^{2}\mathbf{I})$

$$E[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$$

• The full model

 $\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma_e^2 \mathbf{I})$

Error structure

$$\sigma_e^2 \mathbf{I} = \sigma_e^2 \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$E[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$$

• The full model

 $\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma_e^2 \mathbf{I})$

Error structure

$$\sigma_e^2 \mathbf{I} = \sigma_e^2 \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \sigma_e^2 & 0 & \dots & 0 \\ 0 & \sigma_e^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sigma_e^2 \end{bmatrix}$$

> photo_m5 <- lm(y ~ type + fpub, data = photo_long)</pre>

```
> photo_m5 <- lm(y ~ type + fpub, data = photo_long)
> summary(photo_m5)
Residuals:
    Min  1Q Median  3Q Max
-3.3639 -0.7954 -0.0344 0.7624 2.8804
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
```

(Intercept) 35.99446 30.48944 1.181 0.2446

```
typegrumpy 1.22834 0.36994 3.320 0.0019 **

fpub -0.01597 0.01529 -1.045 0.3023

---

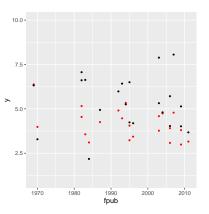
Signif. codes:

0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

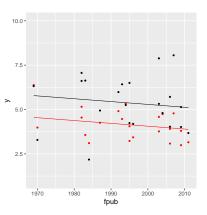
```
Residual standard error: 1.227 on 41 degrees of freedom
Multiple R-squared: 0.2281, Adjusted R-squared: 0.1904
F-statistic: 6.058 on 2 and 41 DF, p-value: 0.004954
```

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30	.48944		1.181	0.244583
typegrumpy	1.22834	0	.36994		3.320	0.001896
fpub	-0.01597	0	.01529	-	-1.045	0.302345

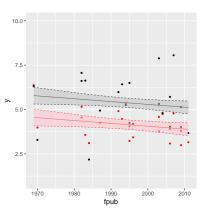
	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30.	.48944		1.181	0.244583
typegrumpy	1.22834	0.	.36994		3.320	0.001896
fpub	-0.01597	0.	.01529	-	-1.045	0.302345



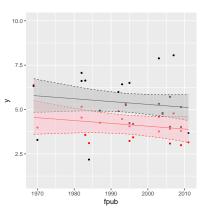
	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30	.48944		1.181	0.244583
typegrumpy	1.22834	0	.36994		3.320	0.001896
fpub	-0.01597	0	.01529	-	-1.045	0.302345



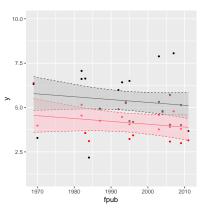
	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30	.48944		1.181	0.244583
typegrumpy	1.22834	0	.36994		3.320	0.001896
fpub	-0.01597	0	.01529	-	-1.045	0.302345



	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30	.48944		1.181	0.244583
typegrumpy	1.22834	0	.36994		3.320	0.001896
fpub	-0.01597	0	.01529	-	-1.045	0.302345

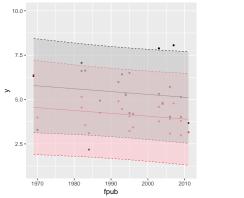


	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30	.48944		1.181	0.244583
typegrumpy	1.22834	0	.36994		3.320	0.001896
fpub	-0.01597	0	.01529	-	-1.045	0.302345



>	<pre>> predict(photo_m5,</pre>						
+	inter	rval = "co	onfidence")				
	fit	lwr	upr				
1	5.560211	4.922936	6.197486				
2	4.331874	3.694599	4.969150				
3	5.192970	4.557260	5.828680				

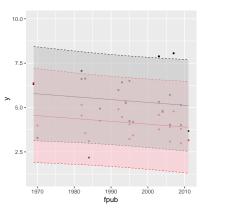
	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30	.48944		1.181	0.244583
typegrumpy	1.22834	0	.36994		3.320	0.001896
fpub	-0.01597	0	.01529	-	-1.045	0.302345



<pre>> predict(photo_m5,</pre>						
+	inter	rval = "co	onfidence")			
	fit	lwr	upr			
1	5.560211	4.922936	6.197486			
2	4.331874	3.694599	4.969150			
3	5.192970	4.557260	5.828680			

> coef(summary(photo_m5))

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	35.99446	30	.48944		1.181	0.244583
typegrumpy	1.22834	0	.36994		3.320	0.001896
fpub	-0.01597	0	.01529	-	-1.045	0.302345



<pre>> predict(photo_m5,</pre>						
+ inte	<pre>interval = "confidence")</pre>					
fit	lwr	upr				
1 5.560211	4.922936	6.197486				
2 4.331874	3.694599	4.969150				
3 5.192970	4.557260	5.828680				

> predict(photo_m5,

+ interval = "prediction")

nature International weekly journal of science **Cryptic evolution in a**

wild bird population

we found that the mean estimated breeding value had indeed increased over the course of the study (linear regression of annual means: b = 0.0022, s.e. = 0.0009, $t_{15} = 2.38$, P = 0.030; GLMM

Cryptic evolution in a wild bird population

we found that the mean estimated breeding value had indeed increased over the course of the study (linear regression of annual means: b = 0.0022, s.e. = 0.0009, $t_{15} = 2.38$, P = 0.030; GLMM

• b is the change in 'condition' per year, is it big or small?

International weekly journal of science Cryptic evolution in a

wild bird population

we found that the mean estimated breeding value had indeed increased over the course of the study (linear regression of annual means: b = 0.0022, s.e. = 0.0009, $t_{15} = 2.38$, P = 0.030; GLMM

- *b* is the change in 'condition' per year, is it big or small?
- 'Condition' is the residual from a regression of body mass on tarsus length.

nature International weekly journal of science **Cryptic evolution in a**

wild bird population

we found that the mean estimated breeding value had indeed increased over the course of the study (linear regression of annual means: b = 0.0022, s.e. = 0.0009, $t_{15} = 2.38$, P = 0.030; GLMM

- *b* is the change in 'condition' per year, is it big or small?
- 'Condition' is the residual from a regression of body mass on tarsus length.
- bjorkland.csv^[1] covers 25 years on the same population (assume data are chronologically ordered)

 Björklund M, Husby A, Gustafsson L (2012) Data from: Rapid and unpredictable changes of the G-matrix in a natural bird population over 25 years. Journal of Evolutionary Biology 26(1): 1-13. Dryad Digital Repository. https://doi.org/10.5061/dryad.s55c4

nature International weekly journal of science

Cryptic evolution in a wild bird population

we found that the mean estimated breeding value had indeed increased over the course of the study (linear regression of annual means: b = 0.0022, s.e. = 0.0009, $t_{15} = 2.38$, P = 0.030; GLMM

- *b* is the change in 'condition' per year, is it big or small?
- 'Condition' is the residual from a regression of body mass on tarsus length.
- bjorkland.csv^[1] covers 25 years on the same population (assume data are chronologically ordered)
- use functions lm and resid

 Björklund M, Husby A, Gustafsson L (2012) Data from: Rapid and unpredictable changes of the G-matrix in a natural bird population over 25 years. Journal of Evolutionary Biology 26(1): 1-13. Dryad Digital Repository. https://doi.org/10.5061/dryad.s55c4

> photo_m6 <- lm(y ~ type - 1 + fpub, data = photo_long)</pre>

- > photo_m6 <- lm(y ~ type 1 + fpub, data = photo_long)</pre>
- > X <- model.matrix(formula(photo_m6), data = photo_long)
 > X[c(1, 2, 3, 44),]

```
> photo_m6 <- lm(y ~ type - 1 + fpub, data = photo_long)</pre>
```

```
> X <- model.matrix(formula(photo_m6), data = photo_long)
> X[c(1, 2, 3, 44), ]
```

	typehappy	typegrumpy	fpub
1	0	1	1983
2	1	0	1983
3	0	1	2006
44	1	0	1994

> photo_m6 <- lm(y ~ type - 1 + fpub, data = photo_long)</pre>

> X <- model.matrix(formula(photo_m6), data = photo_long)
> X[c(1, 2, 3, 44),]

	typehappy	typegrumpy	fpub	(Intercept)	typegrumpy	fpub
1	0	1	1983	1	1	1983
2	1	0	1983	1	0	1983
3	0	1	2006	1	1	2006
44	1	0	1994	1	0	1994

> photo_m6 <- lm(y ~ type - 1 + fpub, data = photo_long)</pre>

> X <- model.matrix(formula(photo_m6), data = photo_long)
> X[c(1, 2, 3, 44),]

	typehappy	typegrumpy	fpub	(Intercept) typegrumpy	fpub
1	0	1	1983	1 1	1983
2	1	0	1983	1 0	1983
3	0	1	2006	1 1	2006
44	1	0	1994	1 0	1994

> coef(summary(photo_m6))

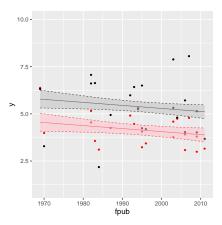
	Estimate	Std.	Error	t	value	Pr(> t)
typehappy	35.99446	30	.48944		1.181	0.2446
typegrumpy	37.22280	30	.48944		1.221	0.2291
fpub	-0.01597	0	.01529	-	-1.045	0.3023

> coef(summary(photo_m6))

	Estimate	Std.	Error	t	value	Pr(> t)
typehappy	35.99446	30	.48944		1.181	0.2446
typegrumpy	37.22280	30	.48944		1.221	0.2291
fpub	-0.01597	0	.01529	-	-1.045	0.3023

> coef(summary(photo_m6))

	Estimate	Std.	Error	t	value	Pr(> t)
typehappy	35.99446	30	.48944		1.181	0.2446
typegrumpy	37.22280	30	.48944		1.221	0.2291
fpub	-0.01597	0	.01529	-	-1.045	0.3023



Jarrod Hadfield Linear Models

> photo_m7 <- lm(y ~ type + fpub + type:fpub, data = photo_long)</pre>

> photo_m7 <- lm(y ~ type * fpub, data = photo_long)</pre>

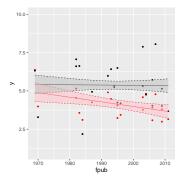
> photo_m7 <- ln	<pre>lm(y ~ type * fpub, data = photo_long</pre>					
	Estimate	Std. Error t value Pr(> t)			
(Intercept)	64.30779	43.19188 1.4889 0.144	4			
typegrumpy	-55.39831	61.08254 -0.9069 0.369	9			
fpub	-0.03016	0.02165 -1.3929 0.171	3			
typegrumpy:fpub	0.02839	0.03062 0.9271 0.359	5			

>	photo_m7	<-	lm(y	~	type	*	fpub,	data	=	photo_1	ong)
---	----------	----	------	---	------	---	-------	------	---	---------	------

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	64.30779	43.19188	1.4889	0.1444
typegrumpy	-55.39831	61.08254	-0.9069	0.3699
fpub	-0.03016	0.02165	-1.3929	0.1713
typegrumpy:fpub	0.02839	0.03062	0.9271	0.3595

```
> X <- model.matrix(formula(photo_m7), data = photo_long)</pre>
> X[c(1, 2, 3, 44), ]
   (Intercept) typegrumpy fpub typegrumpy:fpub
1
                          1 1983
                                              1983
2
                          0 1983
                                                 0
3
                          1 2006
                                              2006
44
                          0 1994
              1
                                                 0
```

> photo_m7 <- 1	n(y ~ type	* fpub, data = pho	to_long)
	Estimate	Std. Error t value	Pr(> t)
(Intercept)	64.30779	43.19188 1.4889	0.1444
typegrumpy	-55.39831	61.08254 -0.9069	0.3699
fpub	-0.03016	0.02165 -1.3929	0.1713
typegrumpy:fpub	0.02839	0.03062 0.9271	0.3595



> photo_long\$mcfpub <- photo_long\$fpub - mean(photo_long\$fpub)</pre>

> photo_long\$mcfpub <- photo_long\$fpub - mean(photo_long\$fpub)</pre>

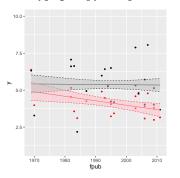
> photo_m8 <- lm(y ~ type * mcfpub, data = photo_long)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.14753	0.26204	15.8279	8.059e-19
typegrumpy	1.22834	0.37058	3.3147	1.957e-03
mcfpub	-0.03016	0.02165	-1.3929	1.713e-01
<pre>typegrumpy:mcfpub</pre>	0.02839	0.03062	0.9271	3.595e-01

> photo_long\$mcfpub <- photo_long\$fpub - mean(photo_long\$fpub)</pre>

> photo_m8 <- lm(y ~ type * mcfpub, data = photo_long)</pre>

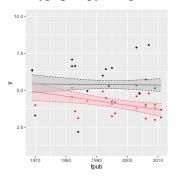
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.14753	0.26204	15.8279	8.059e-19
typegrumpy	1.22834	0.37058	3.3147	1.957e-03
mcfpub	-0.03016	0.02165	-1.3929	1.713e-01
typegrumpy:mcfpub	0.02839	0.03062	0.9271	3.595e-01



> photo_long\$mcfpub <- photo_long\$fpub - mean(photo_long\$fpub)</pre>

> photo_m8 <- lm(y ~ type * mcfpub, data = photo_long)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.14753	0.26204	15.8279	8.059e-19
typegrumpy	1.22834	0.37058	3.3147	1.957e-03
mcfpub	-0.03016	0.02165	-1.3929	1.713e-01
typegrumpy:mcfpub	0.02839	0.03062	0.9271	3.595e-01

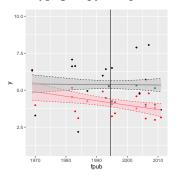


> logLik(photo_m7)
'log Lik.' -69.41177 (df=5)
> logLik(photo_m8)
'log Lik.' -69.41177 (df=5)

> photo_long\$mcfpub <- photo_long\$fpub - mean(photo_long\$fpub)</pre>

> photo_m8 <- lm(y ~ type * mcfpub, data = photo_long)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.14753	0.26204	15.8279	8.059e-19
typegrumpy	1.22834	0.37058	3.3147	1.957e-03
mcfpub	-0.03016	0.02165	-1.3929	1.713e-01
typegrumpy:mcfpub	0.02839	0.03062	0.9271	3.595e-01



> logLik(photo_m7)
'log Lik.' -69.41177 (df=5)
> logLik(photo_m8)
'log Lik.' -69.41177 (df=5)

'We found higher heritabilities overall than Hadfield et al.(2006a), thereby illustrating that the genetic determinism of colouration can vary across populations and requires further quantitative genetic investigations.'

'We found higher heritabilities overall than Hadfield et al.(2006a), thereby illustrating that the genetic determinism of colouration can vary across populations and requires further quantitative genetic investigations.'

	nb obs	V _{Am}	CV_{A_m}	h_m^2
Corsica				
Blue brightness	1795	3.73 (1.02)	12.34	0.18 (0.05)
Blue hue	1795	7.48 (4.98)	0.73	0.07 (0.04)
Blue UV chroma	1795	2.5E10 ⁻⁴ (5.3E10 ⁻⁵)	4.06	0.19 (0.06)
Yellow brightness	1772	0.95 (0.61)	6.05	0.07 (0.05)
Yellow chroma	1957	3.6E10 ⁻³ (1.2E10 ⁻³)	7.56	0.13 (0.04)

'We found higher heritabilities overall than Hadfield et al.(2006a), thereby illustrating that the genetic determinism of colouration can vary across populations and requires further quantitative genetic investigations.'

	nb obs	V _{Am}	CV_{A_m}	h_m^2
Corsica				
Blue brightness	1795	3.73 (1.02)	12.34	0.18 (0.05)
Blue hue	1795	7.48 (4.98)	0.73	0.07 (0.04)
Blue UV chroma	1795	2.5E10 ⁻⁴ (5.3E10 ⁻⁵)	4.06	0.19 (0.06)
Yellow brightness	1772	0.95 (0.61)	6.05	0.07 (0.05)
Yellow chroma	1957	3.6E10 ⁻³ (1.2E10 ⁻³)	7.56	0.13 (0.04)

	cap colour	chest colour
heritability	0.10 ± 0.11	0.07 ± 0.09

'We found higher heritabilities overall than Hadfield et al.(2006a), thereby illustrating that the genetic determinism of colouration can vary across populations and requires further quantitative genetic investigations.'

	nb obs	V _{Am}	CV_{A_m}	h_m^2
Corsica				
Blue brightness	1795	3.73 (1.02)	12.34	0.18 (0.05)
Blue hue	1795	7.48 (4.98)	0.73	0.07 (0.04)
Blue UV chroma	1795	2.5E10 ⁻⁴ (5.3E10 ⁻⁵)	4.06	0.19 (0.06)
Yellow brightness	1772	0.95 (0.61)	6.05	0.07 (0.05)
Yellow chroma	1957	3.6E10 ⁻³ (1.2E10 ⁻³)	7.56	0.13 (0.04)

	cap colour	chest colour
heritability	0.10 ± 0.11	0.07 ± 0.09

The difference between 'significant' and 'not significant' is not itself statistically significant. Gelman & Stern The American Statistician 60.4 (2006): 328-331.

> photo_long\$ypub <- 2017 - photo_long\$fpub</pre>

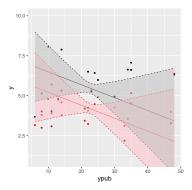
- > photo_long\$ypub <- 2017 photo_long\$fpub</pre>
- > photo_m9 <- lm(y ~ type + ypub + age, data = photo_long)</pre>

- > photo_long\$ypub <- 2017 photo_long\$fpub</pre>
- > photo_m9 <- lm(y ~ type + ypub + age, data = photo_long)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.48779	3.2926	0.4519	0.654420
typegrumpy	1.28533	0.4362	2.9467	0.005948
ypub	-0.08073	0.1288	-0.6266	0.535349
age	0.09424	0.1280	0.7363	0.466935

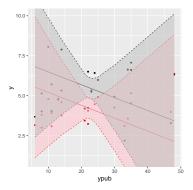
- > photo_long\$ypub <- 2017 photo_long\$fpub</pre>
- > photo_m9 <- lm(y ~ type + ypub + age, data = photo_long)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.48779	3.2926	0.4519	0.654420
typegrumpy	1.28533	0.4362	2.9467	0.005948
ypub	-0.08073	0.1288	-0.6266	0.535349
age	0.09424	0.1280	0.7363	0.466935



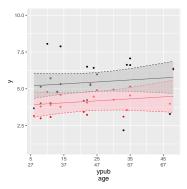
- > photo_long\$ypub <- 2017 photo_long\$fpub</pre>
- > photo_m9 <- lm(y ~ type + ypub + age, data = photo_long)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.48779	3.2926	0.4519	0.654420
typegrumpy	1.28533	0.4362	2.9467	0.005948
ypub	-0.08073	0.1288	-0.6266	0.535349
age	0.09424	0.1280	0.7363	0.466935

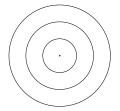


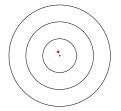
- > photo_long\$ypub <- 2017 photo_long\$fpub</pre>
- > photo_m9 <- lm(y ~ type + ypub + age, data = photo_long)</pre>

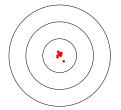
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.48779	3.2926	0.4519	0.654420
typegrumpy	1.28533	0.4362	2.9467	0.005948
ypub	-0.08073	0.1288	-0.6266	0.535349
age	0.09424	0.1280	0.7363	0.466935

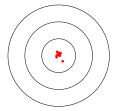


Jarrod Hadfield Linear Models

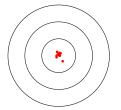








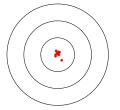
Accurate and Precise

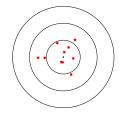


Accurate and Precise

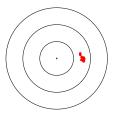
Accurate but Imprecise

Accuracy and Precision





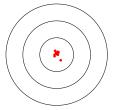
Accurate and Precise



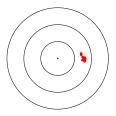
Biased but Precise

Accurate but Imprecise

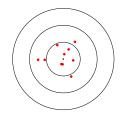
Accuracy and Precision



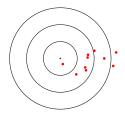
Accurate and Precise



Biased but Precise

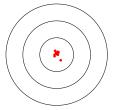


Accurate but Imprecise

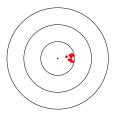


Biased and Imprecise

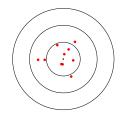
Accuracy and Precision



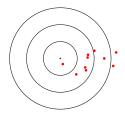
Accurate and Precise



Biased but Precise



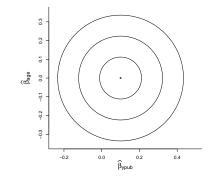
Accurate but Imprecise



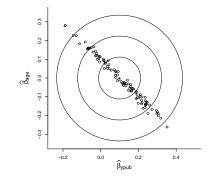
Biased and Imprecise

• Imagine that the true slope was 0.1 for ypub and 0 for age.

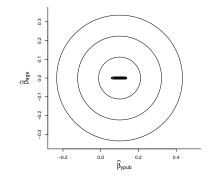
• Imagine that the true slope was 0.1 for ypub and 0 for age.



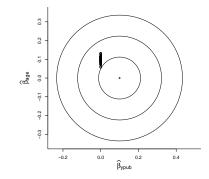
• Imagine that the true slope was 0.1 for ypub and 0 for age.



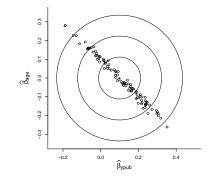
• Imagine that the true slope was 0.1 for ypub and 0 for age.



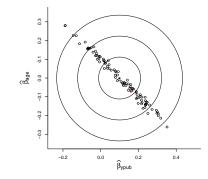
• Imagine that the true slope was 0.1 for ypub and 0 for age.



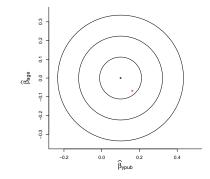
• Imagine that the true slope was 0.1 for ypub and 0 for age.



• Imagine that the true slope was 0.1 for ypub and 0 for age.

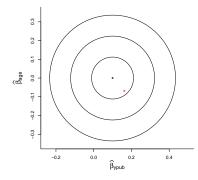


• Imagine that the true slope was 0.1 for ypub and 0 for age.



• Imagine that the true slope was 0.1 for ypub and 0 for age.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.02519	3.5331	0.8562	0.3982352
typegrumpy	1.85607	0.4680	3.9656	0.0003858
ypub	0.16201	0.1382	1.1720	0.2498523
age	-0.06835	0.1373	-0.4977	0.6221295



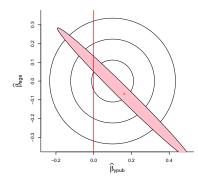
• Imagine that the true slope was 0.1 for ypub and 0 for age.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.02519	3.5331	0.8562	0.3982352
typegrumpy	1.85607	0.4680	3.9656	0.0003858
ypub	0.16201	0.1382	1.1720	0.2498523
age	-0.06835	0.1373	-0.4977	0.6221295



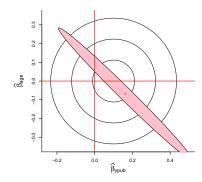
• Imagine that the true slope was 0.1 for ypub and 0 for age.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.02519	3.5331	0.8562	0.3982352
typegrumpy	1.85607	0.4680	3.9656	0.0003858
ypub	0.16201	0.1382	1.1720	0.2498523
age	-0.06835	0.1373	-0.4977	0.6221295



• Imagine that the true slope was 0.1 for ypub and 0 for age.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.02519	3.5331	0.8562	0.3982352
typegrumpy	1.85607	0.4680	3.9656	0.0003858
ypub	0.16201	0.1382	1.1720	0.2498523
age	-0.06835	0.1373	-0.4977	0.6221295



• Variance Inflation Factor

- Variance Inflation Factor
- > car::vif(m1)

typegrumpy	ypub	age
1.00000	57.61506	57.61506

- Variance Inflation Factor
- > car::vif(m1)
- typegrumpy ypub age 1.00000 57.61506 57.61506
 - Compares the sampling variance to those that would have been observed had the predictors been uncorrelated

- Variance Inflation Factor
- > car::vif(m1)
- typegrumpy ypub age 1.00000 57.61506 57.61506
 - Compares the sampling variance to those that would have been observed had the predictors been uncorrelated
 - Sampling correlations

- Variance Inflation Factor
- > car::vif(m1)
- typegrumpy ypub age 1.00000 57.61506 57.61506
 - Compares the sampling variance to those that would have been observed had the predictors been uncorrelated
 - Sampling correlations

> sC <- summary(m1)\$cov.unscaled * summary(m1)\$sigma^2
> cov2cor(sC)

	(Intercept)	typegrumpy	ypub	age
(Intercept)	1.0000	-0.0662	0.9651	-0.9889
typegrumpy	-0.0662	1.0000	0.0000	-0.0000
ypub	0.9651	0.0000	1.0000	-0.9913
age	-0.9889	-0.0000	-0.9913	1.0000

- Variance Inflation Factor
- > car::vif(m1)
- typegrumpy ypub age 1.00000 57.61506 57.61506
 - Compares the sampling variance to those that would have been observed had the predictors been uncorrelated
 - Sampling correlations

> sC <- summary(m1)\$cov.unscaled * summary(m1)\$sigma^2
> cov2cor(sC)

	(Intercept)	typegrumpy	ypub	age
(Intercept)	1.0000	-0.0662	0.9651	-0.9889
typegrumpy	-0.0662	1.0000	0.0000	-0.0000
ypub	0.9651	0.0000	1.0000	-0.9913
age	-0.9889	-0.0000	-0.9913	1.0000

• Correlations large in magnitude indicate pairs of effects that are hard to separate

Select age or fpub effects

Select age or fpub effects

• Retain the most biologically plausible variable and be honest ('we could not reliably separate the effects of ypub from age')

Select age or fpub effects

• Retain the most biologically plausible variable and be honest ('we could not reliably separate the effects of ypub from age')

Estimate Std. Error t value Pr(>|t|) ypub 0.09382 0.018 5.211 9.895e-06

• Fit both independently and retain the model with highest likelihood and be honest (because you could have selected the wrong term)

Select age or fpub effects

• Retain the most biologically plausible variable and be honest ('we could not reliably separate the effects of ypub from age')

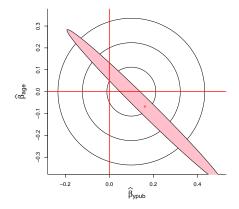
Estimate Std. Error t value Pr(>|t|) ypub 0.09382 0.018 5.211 9.895e-06

• Fit both independently and retain the model with highest likelihood and be honest (because you could have selected the wrong term)

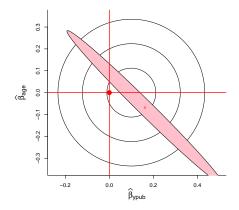
Estimate Std. Error t value Pr(>|t|) age 0.09121 0.0182 5.013 1.777e-05

Be agnostic about age or ypub effects

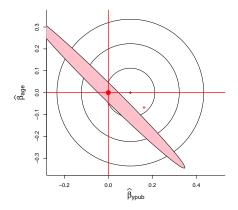
Be agnostic about age or ypub effects



Be agnostic about age or ypub effects



Be agnostic about age or ypub effects



- Retain both and justify with the joint test $\beta_{age} = \beta_{ypub} = 0$
- F-test: Multi-parameter version of the t-test.

- Retain both and justify with the joint test $\beta_{\rm age}=\beta_{\rm ypub}=0$
- F-test: Multi-parameter version of the t-test.

- Retain both and justify with the joint test $\beta_{\rm age}=\beta_{\rm ypub}=0$
- F-test: Multi-parameter version of the t-test.
- 5.944669e-05
 - Wald test: Multi-parameter version of the z-test.

- Retain both and justify with the joint test $\beta_{\rm age}=\beta_{\rm ypub}=0$
- F-test: Multi-parameter version of the t-test.
- 5.944669e-05
 - Wald test: Multi-parameter version of the z-test.
- > aod::wald.test(sC, coef(m1), Terms = 3:4)

P

1.526501e-06

- Retain both and justify with the joint test $\beta_{\rm age}=\beta_{\rm ypub}=0$
- F-test: Multi-parameter version of the t-test.
- 5.944669e-05
 - Wald test: Multi-parameter version of the z-test.
- > aod::wald.test(sC, coef(m1), Terms = 3:4)

Ρ

- 1.526501e-06
 - Likelihood-ratio test:

- Retain both and justify with the joint test $\beta_{\rm age}=\beta_{\rm ypub}=0$
- F-test: Multi-parameter version of the t-test.
- 5.944669e-05
 - Wald test: Multi-parameter version of the z-test.
- > aod::wald.test(sC, coef(m1), Terms = 3:4)

Ρ

- 1.526501e-06
 - Likelihood-ratio test:
- > anova(update(m1, . ~ . age ypub), m1, test = "LRT")
 Pr(>Chi)
- 1.526501e-06

Confounding: Sequential tests

> anova(m1)

	\mathtt{Df}	Sum Sq	Mean Sq	F value	Pr(>F)
typegrumpy	1	31.005	31.005	15.7258	0.0003858
ypub	1	52.321	52.321	26.5374	1.279e-05
age	1	0.488	0.488	0.2477	0.6221295
Residuals	32	63.091	1.972		

> anova(m1)

Df Sum Sq Mean Sq F valuePr(>F)typegrumpy1 31.00531.00515.72580.0003858ypub1 52.32152.32126.53741.279e-05age1 0.4880.4880.24770.6221295Residuals32 63.0911.972

Low Precision

• Small sample size

- Small sample size
- Predictors not very variable

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

Low Precision

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

Low Precision

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

Bias

Wrong model

Low Precision

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

- Wrong model
- Unmeasured variables

Low Precision

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

- Wrong model
- Unmeasured variables
 - No Control
 - No Randomisation

Low Precision

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

- Wrong model
- Unmeasured variables
 - No Control
 - No Randomisation
- Poorly measured variables

Low Precision

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

- Wrong model
- Unmeasured variables
 - No Control
 - No Randomisation
- Poorly measured variables
 - Predictors measured with error

Low Precision

- Small sample size
- Predictors not very variable
 - Little variation in continuous predictors
 - Levels of a categorical predictor not equally represented
- Predictors confounded
 - Little independent variation in continuous predictors
 - Combinations of levels not equally represented
- High residual variation
 - Conditions not standardised experimentally
 - Conditions not standardised statistically

- Wrong model
- Unmeasured variables
 - No Control
 - No Randomisation
- Poorly measured variables
 - Predictors measured with error
 - Predictors/response missing not at random