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Linear Models

OK - yesterday we used the function lm to fit a very basic linear model. Today we’ll look at linear
models more generally. We’ll see what makes a linear model linear, and tomorrow we’ll see how we
can generalise it to non-normal response variables.



What is a Linear Model?

> photo_long[c(1:3, 44), ]

y l5 g5 type photo person age fpub

1 6.631148 34 88 grumpy 4509 peter_k 57 1983

2 3.565574 104 18 happy 4510 peter_k 57 1983

3 4.032787 101 21 grumpy 4511 ally_p 38 2006

44 5.336066 79 43 happy 4550 tom_l 49 1994
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What is a Linear Model?

We’ll start by looking at our grumpy scores again, but we’ll also analyse a new data set as these
faces are starting to get a bit tedious.
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What is a Linear Model?

These are the first three lines and the final line of our data frame. We have our average grumpy
scores for the 44 photos (y). The next two columns we haven’t spoken about yet - these are
the number of respondents that gave the photo a grump score less than or equal to 5 (l5) and
the number of respondents that gave the photo a grump score greater than 5 (g5). We have the
conditions under which the photo was taken (type), the name of the photo (photo), the name of the
person photographed (person), their age (age) when photographed (2017) and the year in which
they published their first paper (fpub).



What is a Linear Model?

Model Syntax y ~ type + fpub

Set of Simultaneous Equations
E [y[1]] = 1β1 + (type[1]=="grumpy")β2 + fpub[1]β3

+ I(fpub[1]^2)β4

E [y[2]] = 1β1 + (type[2]=="grumpy")β2 + fpub[2]β3

+ I(fpub[2]^2)β4

E [y[3]] = 1β1 + (type[3]=="grumpy")β2 + fpub[3]β3

+ I(fpub[3]^2)β4

...
...

E [y[44]] = 1β1 + (type[44]=="grumpy")β2 + fpub[44]β3

+ I(fpub[44]^2)β4
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What is a Linear Model?

So we might start with a model like this: the average grumpy score is a function of the type of
photo and when the person photographed published their first paper. I’m sure you have an intuitive
idea of what the model consists of, but what actually does the mathematical model look like?
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What is a Linear Model?

It looks overwhelming, but that’s mainly because there’s just a lot of it. In blue we have data that
we’ve gone out and collected and in red we have the parameters we’d like to estimate using those
data. On the left hand side we have the expected value of each observation and on the right hand
side we have our predictors in blue: an intercept of all ones, categorical predictors such as type are
expanded into a series of binary variables of the form ’is the photo of type ‘grumpy’, yes or no?’ and
continuous predictors such as fpub remain unchanged. The key thing is that although you can do
what you want with the predictor variables, the blue things on the right, you are never multiplying or
dividing the parameters, the things in red, by each other. That’s what makes a linear model linear.
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What is a Linear Model?

So for example you could also include the square of the year since first publication (fpub^2) and
include this as a predictor. This would allow a quadratic relationship between the response variable
and fpub - a non-linear relationship if you like, but the model is still a linear model. You are still
taking your data (fpub) or some function of your data (fpub^2 or type=="grumpy") and multiplying
them by a parameter and adding them together.
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Do what you want with your data

but a number you have collected should
never appear on both the left and right hand side in any form.
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What is a Linear Model?

So you are free to do what ever you wish to your data, you could square it, you could take its
absolute value, you could - if it made sense, which it probably wouldn’t - take the loop de loop of it.
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What is a Linear Model?

The only thing you are not allowed to do unless you really know what you are doing is to use the
same numbers to calculate something on both the right and on the left.
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What is a Linear Model?

To illustrate the point, a few years ago a paper was published in Science on pronghorns (a strange
antelope-like animal from North America).
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What is a Linear Model?

The key relationship in this paper is depicted here. On the x-axis we have annual fawn mortality over
11 years and on the y-axis we have something called the Bateman slope. It’s not important to know
what the Bateman slope is, but it is important to know that in this particular instance the Bateman
slope is calculated using fawn mortality. So fawn mortality is being used directly as a predictor and
indirectly in the response. If you see relationships like this in biology where the relationship is super
strong it is nearly always because the same numbers have been used to calculate both the quantities
on the y and x axis. The relationship is bogus.

I never want to see anyone do this unless they really know what they’re doing. To drive it home,
generate 100 random data points (call them y1) and then another random data points (call them
y2). Let’s imagine these were the size of an organism at two time points and we would like to know
whether animals that were large at time 1 grow slower than animals that were small. You might
then look at the relationship between growth (y2-y1) and starting size (y1). Try it.
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What is a Linear Model?

Ok - let’s assume this hasn’t been done.
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What is a Linear Model?

and let’s not fit a quadratic term for now. Now, we’ve only looked at these equations for four data
points, and the model only contains three parameters, but that’s bad enough.
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...
...

E [y[44]] = 1β1 + (type[44]=="grumpy")β2 + fpub[44]β3

+ I(fpub[44]^2)β4

Compact representation: design matrix and parameter vector

E [y] = Xβ

> X <- model.matrix(y ~ type + fpub, data = photo_long)

> X[c(1, 2, 3, 44), ]

(Intercept) typegrumpy fpub

1 1 1 1983

2 1 0 1983

3 1 1 2006

44 1 0 1994
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What is a Linear Model?

We can, however, represent this whole system of equations very compactly in terms of matrices and
vectors. This neat little equation is doing all this: the X matrix we call a design matrix it has three
columns: the first is all ones, the second is all this blue information here (e.g. type=="grumpy")
and so on. β is a parameter vector with three elements: β1, β2 and β3. We can matrix multiply
these two things together and by doing this we are carrying out this set of operations - multiply β
by the relevant bit of information and then summing over all terms.
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In R you can generate this design matrix using the function model.matrix: and you can see how
it corresponds to the data: the 3rd observation is for someone under grumpy conditions who first
published a paper in 2006, the 44th observation is for someone under ‘not grumpy’ (i.e. happy)
conditions who first published a paper in 1994. I find it is often helpful to look at the design matrix
if I’m not sure exactly what the parameters are relating to.



What is a Linear Model?

E [y] = Xβ

The full model

y ∼ N(Xβ, σ2
e I)

Error structure

σ2
e I = σ2

e


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 0 1



=


σ2
e 0 . . . 0
0 σ2

e . . . 0
...

...
. . .

...
0 0 0 σ2

e
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What is a Linear Model?

OK- so we’ve got our set of simultaneous equations and the natural thing to do (if we can remember
school) would be to solve them for the β’s. So lets take our first three observations where the scores
(to the nearest integer) are 7, 4 and 4. The equations are then

7 = 1β1 + 1β2 + 1983β3

4 = 1β1 + 0β2 + 1983β3

4 = 1β1 + 1β2 + 2006β3

If we take Equation 1 from Equation 3 we have:

−3 = 2006β3 − 1983β3

so β3 must be −3/(2006 − 1983) = −0.13. If we substitute β3 into Equation 2 we have

4 = β1 + 1983 × −0.13

so β1 must be 4 − 1983 × −0.13 = 262. If we substitute β1 and β3 into equation 1 (or 3):

7 = 262 + β2 + 1983 × −0.13

so β2 must be equal to 7 − 262 − 1983 × −0.13 = 3. Tedious perhaps, but simple!

The problem of course, is that to solve them we need to know the expected grumpy score given the
predictors. What is the expected score for a photo of a person with these properties? And we don’t
know the expected score, all that we know is the actual score we have for this particular photo.
Which means that we have to do one more bit of modelling - we need to model how the actual
scores will deviate from the expected value: what will the noise look like.
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What is a Linear Model?

In a standard linear model we assume that the error around the expected value is normally distributed,
and that the variance of these errors (the residual variance) is to be estimated.
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What is a Linear Model?

Now remember that y here is not a single observation: this is a vector (the column) of all the 44
scores. The mean vector (the prediction) is also a vector with 44 elements: one for each data point,
and the noise term is a 44 by 44 covariance matrix. I is called an identity matrix it has ones along
the diagonal, and zero everywhere else.
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What is a Linear Model?

When we multiply it by our residual variance we get the error structure for our model. The key
things to note is that first: all off-diagonal terms are zero - this means that we are assuming that
the errors around the predicted values are uncorrelated. If photo 1 has a higher score than predicted,
you would not expect that photo 2 also had a higher score. This is an assumption of the model and
it is easy to see why this might not be true (we’ll deal with this in the mixed model lectures). The
second thing to note is that we expect the error to be equally variable for each data point. In fact,
yesterday we saw that it was probably a poor assumption and we might like to change it.
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> photo_m5 <- lm(y ~ type + fpub, data = photo_long)

> summary(photo_m5)

Residuals:

Min 1Q Median 3Q Max

-3.3639 -0.7954 -0.0344 0.7624 2.8804

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.99446 30.48944 1.181 0.2446

typegrumpy 1.22834 0.36994 3.320 0.0019 **

fpub -0.01597 0.01529 -1.045 0.3023

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.227 on 41 degrees of freedom

Multiple R-squared: 0.2281, Adjusted R-squared: 0.1904

F-statistic: 6.058 on 2 and 41 DF, p-value: 0.004954
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so we can fit our model, which you should be familiar with,
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and the results are.... And again our eyes are dragged to the final column and the stars rewarding
us for our effort. But let’s think what the model is actually telling us. The intercept is a score of 36
which seems a bit bonkers given we know that the photos were scored on a scale of 1 to 10. It also
has a massive standard error: the true value could plausibly be as high as 100 or as low as -30! But
what does this number, 36, actually mean? Well the intercept is the score for someone under happy
conditions ... but who published their first paper in the year Christ was born (fpub=0). Deborah
Charlesworth is old, but she’s not that old, so for now lets not worry too much about this issue and
return to it shortly.

Photos taken of people under grumpy conditions do seem to get a higher grump score - our best
estimate is a little over 1 unit higher, and the standard error tells us it is unlikely our true value is
less than 0.5. The p-value tells us it is very likely greater than zero.

And finally, the estimate associated with fpub tells us that people are being scored a little happier (by
0.016 units) for each year they waited to start publishing. Is this a big or small value? I’m not sure
immediately, but fpub spans about 40 years (Deborah first published in 1969 (Honky Tonk Women
- The Rolling Stones) and Alex Twyford first published in 2011 (Adele - Rolling in the Deep)) and
so if we multiply this number by 40 we get -0.639. Not a tremendously big change, and indeed the
sampling distribution overlaps zero and the effect is non-significant. However, the standard error is
about as big as the estimate so the true change could be as big as -1.862 units. I think Alex would
be pretty sad to look 2 units grumpier when he’s been publishing as long as Deborah so perhaps we
should collect some more data before drawing firm conclusions about the importance of fpub.
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> coef(summary(photo_m5))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.99446 30.48944 1.181 0.244583

typegrumpy 1.22834 0.36994 3.320 0.001896

fpub -0.01597 0.01529 -1.045 0.302345

> predict(photo_m5,

+ interval = "confidence")

fit lwr upr

1 5.560211 4.922936 6.197486

2 4.331874 3.694599 4.969150

3 5.192970 4.557260 5.828680

> predict(photo_m5,

+ interval = "prediction")

Jarrod Hadfield Linear Models

Linear Model

> coef(summary(photo_m5))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.99446 30.48944 1.181 0.244583

typegrumpy 1.22834 0.36994 3.320 0.001896

fpub -0.01597 0.01529 -1.045 0.302345

> predict(photo_m5,

+ interval = "confidence")

fit lwr upr

1 5.560211 4.922936 6.197486

2 4.331874 3.694599 4.969150

3 5.192970 4.557260 5.828680

> predict(photo_m5,

+ interval = "prediction")

2
0
2
5
-0
2
-1
8

Linear Models

Linear Model

Of course it’s often easier, particularly when there are few terms in the model,
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to graph the relationships. So these are our data with fpub along the x-axis and the score on the
right axis, and the photo type in different colours (black is grump, red is happy).



Linear Model

> coef(summary(photo_m5))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.99446 30.48944 1.181 0.244583

typegrumpy 1.22834 0.36994 3.320 0.001896

fpub -0.01597 0.01529 -1.045 0.302345

2.5

5.0

7.5

10.0

1970 1980 1990 2000 2010

fpub

y

> predict(photo_m5,

+ interval = "confidence")

fit lwr upr

1 5.560211 4.922936 6.197486

2 4.331874 3.694599 4.969150

3 5.192970 4.557260 5.828680

> predict(photo_m5,

+ interval = "prediction")

Jarrod Hadfield Linear Models

Linear Model

> coef(summary(photo_m5))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.99446 30.48944 1.181 0.244583

typegrumpy 1.22834 0.36994 3.320 0.001896

fpub -0.01597 0.01529 -1.045 0.302345

2.5

5.0

7.5

10.0

1970 1980 1990 2000 2010

fpub

y

> predict(photo_m5,

+ interval = "confidence")

fit lwr upr

1 5.560211 4.922936 6.197486

2 4.331874 3.694599 4.969150

3 5.192970 4.557260 5.828680

> predict(photo_m5,

+ interval = "prediction")

2
0
2
5
-0
2
-1
8

Linear Models

Linear Model

These lines are our best estimates of how the expected score changes as function of fpub and photo
type. Note that the lines are parallel; we only have one parameter associated with fpub and therefore
we expect the same relationship to hold irrespective of whether the photo type is grumpy or happy.
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We can also overlay our standard errors around these expectations. The key thing to notice about
them is that the standard errors on the predictions are flaring out as we move toward more extreme
values of fpub, particularly for very low values of fpub. It makes sense that this should happen; we
have quite a lot of people that started publishing in the mid-90’s and it makes sense that we can
estimate their expected grumpiness more accurately if grumpiness does depend on fpub. You can
also see that by the time we extrapolate down to the year Christ was born the standard errors would
be huge. Another way to understand why this happens is to think about what would happen if you
took plausible values of the fpub slope from its sampling distribution and recalculated the line. You
would get a see-saw pattern around 1995 where small differences in slope have magnified effects at
extreme values.
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We can also display the 95% confidence intervals, which should be about twice as wide as the
standard errors. You might now start worrying that there’s conflict between what the coefficient
table tells you and what the graph tells you. The confidence intervals overlap; is there really a
difference between the scores of grumpy and happy photos? The confidence intervals overlap more
at extreme values of fpub; does this mean that I am less confident that there would be a difference
between grumpy and happy photos for people that started publishing a long time ago - the model
output doesn’t seem to suggest this? It is important to understand that these are the confidence
intervals of the predicted values values not the confidence intervals of the parameters themselves.
We’ll return to this a little later but for now I think its useful just to know
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that you can get them using the predict function
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The other type of interval that is useful is the prediction interval. So these intervals should contain
95% of the observations, and you can see that 2 out of 44 observations lie outside the 95% prediction
interval, which is about what you expect. However, you can probably also see that 3 out of 22 grumpy
photos lie outside their prediction interval whereas no happy photos did so, and in fact there’s quite
a deficit of red points close to the prediction boundary. As we saw yesterday this is probably because
the grumpy scores are more variable than the happy scores but in this model we’ve estimated a
common variance.
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The prediction intervals can also be obtained using the predict function but prediction must be
passed to the interval argument.



Estimates, then standard errors, then p-values.

b is the change in ‘condition’ per year, is it big or small?

‘Condition’ is the residual from a regression of body mass on tarsus
length.

bjorkland.csv[1] covers 25 years on the same population (assume
data are chronologically ordered)

use functions lm and resid
[1] Björklund M, Husby A, Gustafsson L (2012) Data from: Rapid and unpredictable changes of the G-matrix in a natural bird population
over 25 years. Journal of Evolutionary Biology 26(1): 1-13. Dryad Digital Repository. https://doi.org/10.5061/dryad.s55c4
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Linear Model

> photo_m6 <- lm(y ~ type - 1 + fpub, data = photo_long)

> X <- model.matrix(formula(photo_m6), data = photo_long)

> X[c(1, 2, 3, 44), ]

typehappy typegrumpy fpub

1 0 1 1983

2 1 0 1983

3 0 1 2006

44 1 0 1994

(Intercept) typegrumpy fpub

1 1 1983

1 0 1983

1 1 2006

1 0 1994

> coef(summary(photo_m6))

Estimate Std. Error t value Pr(>|t|)

typehappy 35.99446 30.48944 1.181 0.2446

typegrumpy 37.22280 30.48944 1.221 0.2291

fpub -0.01597 0.01529 -1.045 0.3023
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Linear Model

One issue that students worry about, I think, is the global intercept. Why have it, why is there
no coefficient associated with happy, and why is the coefficient associated with grumpy type the
difference between happy type and grumpy type? Surely I just want to know what the underlying
mean (or intercept) is for the two types of photo?
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Well we are free to remove the global intercept by adding -1 to the model formula. - removes the
following term and a 1 stands for the global intercept in R. The global intercept is automatically
included so if you don’t want it you have to explicitly remove it.
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If we look at the design matrix for this new model
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we can see that the first column of 1’s has been removed, and has been replaced with a new binary
variable ‘was the photo taken under happy conditions or not?’.
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We can compare our new design matrix with the original design matrix (in blue) where we included a
global intercept. You can see that the design matrix for happy photos hasn’t changed: if we wanted
to work out the expected score for a happy photo in the year of Christ (the intercept) that would
simply be our first coefficient in both cases. However, the design matrix for grumpy photos has
changed. Before we would have to take the global intercept and add it to the grumpy coefficient to
get the expected score for a grumpy photo in the year of Christ. Now, we would just take the grumpy
coefficient. So although there are coefficients called typegrumpy in both models, the coefficients are
actually different things. In our new model it is the intercept (ie. when fpub=0) for grumpy photos,
and in the original model it was the difference in intercept between grumpy and happy photos.
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If we fit our new model then we can see that our model reflects this. The typegrumpy coefficient
is now similar to the typehappy coefficient because it represents the expected score at the birth
of Christ. The difference between these two coefficients is about 1.23 and is exactly equal to the
typehappy coefficient in our original (blue) model. This is an important point. The two models are
identical it is just they are reparameterisations of each other and we’re free to use the parameterisation
that we feel is most informative. The reason that the default is to have a global intercept is that
we’re usually interested in the difference between groups or treatment levels. We can calculate it
easy enough from these numbers (37.22-35.99) but its not possible from this summary to work
out the standard error of the difference, nor is it possible from this summary to test whether the
difference is significant. The p-value associated with typegrumpy is now testing whether grumpy
photos have a score significantly different from zero in the year Christ was born. Not a very relevant
hypothesis to be testing.
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Just to assure you that the two models really are equivalent and that they are different parameteri-
sations of the same underlying model



Linear Model

> coef(summary(photo_m6))

Estimate Std. Error t value Pr(>|t|)

typehappy 35.99446 30.48944 1.181 0.2446

typegrumpy 37.22280 30.48944 1.221 0.2291

fpub -0.01597 0.01529 -1.045 0.3023

2.5

5.0

7.5

10.0

1970 1980 1990 2000 2010

fpub

y

Jarrod Hadfield Linear Models

Linear Model

> coef(summary(photo_m6))

Estimate Std. Error t value Pr(>|t|)

typehappy 35.99446 30.48944 1.181 0.2446

typegrumpy 37.22280 30.48944 1.221 0.2291

fpub -0.01597 0.01529 -1.045 0.3023

2.5

5.0

7.5

10.0

1970 1980 1990 2000 2010

fpub

y

2
0
2
5
-0
2
-1
8

Linear Models

Linear Model

we can also draw our model together with the standard errors around the expected values. Identical
to that we saw before.
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In the previous model we assumed that the effect of fpub on grumpiness scores was the same
irrespective of whether the photos were taken under grumpy or happy conditions. It seems a perfectly
reasonable assumption and I can think of no reason why it would be any different. But people do
like to fit interactions because a) they think they should b) because they really want fpub to explain
something and perhaps it only does under grumpy conditions, or under grumpy conditions if the
person is standing on one-leg etc or c) because the interaction is biologically likely or is the focus of
the study.
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a) and b) are disastrous if the results are not treated with caution. If you test a lot of terms in
your model some will be significant just by chance even if the true value of the coefficients is zero.
You’ll get many false positives and you’ll waste a lot of time coming up with some cock and bull
story to explain the finding. This is as likely to happen with main effects as it is with interactions,
but the problem is that there is generally more possible interactions than main effects. With 6 main
effects there are 15 two-way interactions. So I urge you to think before jumping into the murky
world of interactions. Decide before you fit the model which interactions, if any, are plausible and/or
of primary interest. Don’t bung all the two-way and three-way interactions into a model and hope
to get something sensible out the other end.



Interactions
> photo_m7 <- lm(y ~ type + fpub + type:fpub, data = photo_long)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.30779 43.19188 1.4889 0.1444

typegrumpy -55.39831 61.08254 -0.9069 0.3699

fpub -0.03016 0.02165 -1.3929 0.1713

typegrumpy:fpub 0.02839 0.03062 0.9271 0.3595
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Lets presume we have thought carefully (I haven’t) and we’d like to fit the interaction. In R we can
do this by having a colon between the two terms we’d like to interact. In this case we’ve also fitted
main effects (we have fpub and type alone in the model formula too) and this is usually what you
would like to do.



Interactions
> photo_m7 <- lm(y ~ type * fpub, data = photo_long)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.30779 43.19188 1.4889 0.1444

typegrumpy -55.39831 61.08254 -0.9069 0.3699

fpub -0.03016 0.02165 -1.3929 0.1713

typegrumpy:fpub 0.02839 0.03062 0.9271 0.3595

Jarrod Hadfield Linear Models

Interactions
> photo_m7 <- lm(y ~ type * fpub, data = photo_long)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.30779 43.19188 1.4889 0.1444

typegrumpy -55.39831 61.08254 -0.9069 0.3699

fpub -0.03016 0.02165 -1.3929 0.1713

typegrumpy:fpub 0.02839 0.03062 0.9271 0.3595

2
0
2
5
-0
2
-1
8

Linear Models

Interactions

We can also define the model more compactly by just having our two terms and a star between
them. This star is shorthand for fit the two main effects and the interaction between them. We can
then look at the model summary
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and I can still see everybody’s eyes going to the p-value column. You’re gutted! The interaction
between type and fpub is not significant, but even worse, grumpy photos are no longer significantly
different from happy photos. The one significant effect you had has disappeared, so what do you do
now? Drop the interaction - it’s not significant after all - and pretend you never did it? But is this
honest - doesn’t the difference between grumpy photos and happy photos depend on the interaction
not being there?

Well lets think what the model looks like, and what hypotheses we’re actually testing first.
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> photo_m7 <- lm(y ~ type * fpub, data = photo_long)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.30779 43.19188 1.4889 0.1444

typegrumpy -55.39831 61.08254 -0.9069 0.3699

fpub -0.03016 0.02165 -1.3929 0.1713

typegrumpy:fpub 0.02839 0.03062 0.9271 0.3595

> X <- model.matrix(formula(photo_m7), data = photo_long)

> X[c(1, 2, 3, 44), ]

(Intercept) typegrumpy fpub typegrumpy:fpub

1 1 1 1983 1983

2 1 0 1983 0

3 1 1 2006 2006

44 1 0 1994 0
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Again, I can find it helpful to inspect the design matrix if I’m not sure exactly what these coefficients
refer to. Lets try and sketch it by hand. If we set everything to zero expect the intercept we have the
expected score of a happy photo at the birth of Christ (64.31). If we add the typegrumpy coefficient
to this we get the expected score of a happy photo at the birth of Christ (64.31 + -55.4 = 8.91).
Next we need to work out how the scores change with fpub, so lets start by looking what the design
matrix looks like for a happy photo (so the second row). The only column which involves fpub is
the third column, so the coefficient fpub is referring to the slope for happy photos: The score is
expected to change by -0.03 units for every year. If we wanted to do the same for grumpy photos
(for example those in the 1st and 3rd row), well fpub appears twice and so what we would have
to do is sum the two coefficients fpub and typegrumpy:fpub in order to get the slope for grumpy
photos (-0.03 + 0.03 = 0). The typegrumpy:fpub coefficient is therefore the difference between
the two slopes.

So the p-value for the typegrumpy coefficient is whether the two types of photos are expected to
differ for people that started publishing 2000 years ago. When we did not have an interaction we
had fairly precise information on whether there would be a difference for those people publishing
2000 years ago because we assumed the difference that we observed amongst our peers would also
hold back then. If we allow the slopes to differ then the difference between the scores of happy and
grumpy photos is allowed to differ amongst people that started publishing at different times. We
can only really know how this difference might change across the range of fpub we have sampled,
and outside of this range we have to extrapolate. Accordingly, the further outside the range we look
the more unreliable our extrapolation is expected to become, to the point where we may no longer
be able to confidently say what the difference between the two photographs would be for someone
publishing 2000 years ago.
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We can see this graphically. The standard errors overlap before about 1980, but are quite far
apart after this. In special cases, non-overlapping standard errors would indicate that the difference
between the two effects is significant at the 5% level, but this is not always the case, and indeed
this is not one of those special cases. A more reliable way to test for significance is to redefine the
null hypothesis so it makes sense. So one possibility would be to start testing hypotheses about
differences in the range of fpub we have sampled. We could, for example, take 1969 from everyone’s
fpub so that the new intercept is now 1969, when Deborah started publishing. That might make
more sense.



Mean-centring

> photo_long$mcfpub <- photo_long$fpub - mean(photo_long$fpub)

> photo_m8 <- lm(y ~ type * mcfpub, data = photo_long)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.14753 0.26204 15.8279 8.059e-19

typegrumpy 1.22834 0.37058 3.3147 1.957e-03

mcfpub -0.03016 0.02165 -1.3929 1.713e-01

typegrumpy:mcfpub 0.02839 0.03062 0.9271 3.595e-01

> logLik(photo_m7)

'log Lik.' -69.41177 (df=5)

> logLik(photo_m8)

'log Lik.' -69.41177 (df=5)
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A more common approach is to mean centre the variable. So recalculate everybody’s fpub as a
deviation from the mean fpub in the sample (around 1995).
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If we refit the model but with fpub mean-centred we can see that the coefficients have changed, as
have the standard errors and the p-values. The intercept now looks reasonable; this is the expected
grumpy score for a happy photo of someone who first started publishing around 1995. The standard
errors are quite tight because we are not having to extrapolate way beyond our data, and the
difference between happy and grumpy scores for these people is about 1 unit and this difference is
well estimated and significantly different from zero.

It is important to remember that this model is identical to the model that we fitted where fpub
wasn’t mean centred. All’s we’ve done is reparameterised the model by shifting the value of fpub so
the intercept is interpreted differently. The slope parameters associated with fpub haven’t changed.
It’s important that you report the mean values of covariates if you mean centre otherwise people
can’t compare your conclusions with theirs if the mean fpub differed, which it most likely will.
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We can see this if we plot our predictions and their standard errors. It’s identical to the previous
plot. We can also see this if we compare this model with the previous one
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The likelihoods are the same.
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All that we have done is reparameterised our model so the value of fpub that corresponds to the
intercept is here (the vertical line). You will sometimes come across the word contrasts: different
contrasts are essentially different parameterisations of the same model and they are often used so
that the estimates are easier to interpret and any hypothesis tests have a more natural meaning.
You might however worry - rightly so - that being able to shift our null hypothesis (in this case the
difference between happy and grumpy photos at the birth of Christ is zero, to the difference is zero
in 1995) is open to abuse. It is. I would decide before hand not to fit the interaction if I thought it
was implausible or if I did think it was plausible I would decide prior to the analysis to either a) mean
centre the covariate (or perform a type-II test, more of which later) or b) drop the interaction if
non-significant (mean centring doesn’t effect the estimate of the slope or the associated p-value) or
c) test the joint null hypothesis that both the main term and the interaction (type and fpub:type)
are zero. This latter test asks whether there is evidence that grumpy and happy photos are scored
differently at any value of fpub rather than some specific value. We’ll see how to do this a little
later.



Is there really an interaction?

‘We found higher heritabilities overall than Hadfield et
al.(2006a), thereby illustrating that the genetic
determinism of colouration can vary across populations
and requires further quantitative genetic investigations.’

The difference between ‘significant’ and ‘not significant’ is not itself
statistically significant. Gelman & Stern The American Statistician 60.4 (2006): 328-331.
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Is there really an interaction?

As an aside, you often see people claim significant differences between groups, or significant differ-
ences between groups in the effect of a covariate (a group by covariate interaction) based on flawed
logic. Sometimes you will see people do it within papers (or particularly in talks); for example they
might find a significant effect of some experimental treatment in males, but a non-significant effect
in females, and then claim this is evidence that the two sexes respond to the treatment differently.
More commonly you see it done when someone compares the results of their study to a previous
one. For example, one study might apply an experimental treatment and find a significant response,
while another study applies the same treatment and does not find a significant response. By claiming
that the treatment has different effects in different populations the authors are essentially claiming
a population by treatment interaction, and you can often find large chunks of discussion dedicated
to explaining why it exists. In many cases, the case for a difference existing at all is weak.
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This is a quote from a paper written by people with good quantitative skills. In their study they
estimated the heritability of plumage colouration in a Corsican population of blue tits and found that
the heritability was significantly different from zero. I had estimated the same parameters previously
and could not reject heritability values of zero, leading to the authors claim that heritabilities vary
from population to population.
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This is their estimates for two plumage regions, the blue head and the yellow chest, showing that
19% of the variation in the blue colouration and 13% of the yellow colouration is genetic. You can see
that the standard errors are less than half the estimate and so if the sampling distributions of these
parameters were normal (generally you need very large sample sizes before the sampling distribution
of a heritability starts to look normal) you would be able to claim that they are significantly different
from zero.
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These are my previous estimates, and you can see that their estimates of heritability are higher than
mine (almost twice is large), but does this imply they’re significantly higher? How would you test
whether they’re significantly different? A very useful result is that the variance of a − b is equal to
the variance of a plus the variance of b minus twice the covariance. Because the two studies are
independent the sampling errors on the pair of estimates (mine and theirs) are independent and so the
covariance is zero. So our best estimate of the difference (for the blue colour) is 0.19− 0.10 = 0.09

and the sampling variance around the difference is 0.062 + 0.112 = 0.016 giving a standard error of√
0.016 = 0.13. So what’s the chance we see a difference of 0.09, or bigger, just by chance? How

do we perform a one-tailed test on the hypothesis that heritabilities in their population are larger
than in mine? 1-pnorm(0.09, 0, 0.13)=0.244. Not very convincing!
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This is such a common mistake to make that prominent statisticians have repeatedly tried to caution
scientists about it. It is obvious once its explained, but unfortunately this type of misinterpretation
doesn’t have a catchy memorable name so you can’t say ’Oh you’ve made an x mistake’ but you
could direct a person to this paper by Gelman & Stern (2006), where it’s nicely explained.



Confounding

> photo_long$ypub <- 2017 - photo_long$fpub

> photo_m9 <- lm(y ~ type + ypub + age, data = photo_long)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.48779 3.2926 0.4519 0.654420

typegrumpy 1.28533 0.4362 2.9467 0.005948

ypub -0.08073 0.1288 -0.6266 0.535349

age 0.09424 0.1280 0.7363 0.466935
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So hopefully you’re starting to get a feel for the underlying model you’re constructing for your data
and an understanding of the hypotheses that are being tested when you summarise a model in R.
The model you choose to fit, and the hypotheses you choose to test, should be dictated by how you
think your data came to be and the questions you want to ask of it. However, sometimes the data
you have collected aren’t up to the task of answering the questions you would like to ask of them.
The information the data provide about a parameter might be so small that that parameter can’t
be estimated precisely enough to be useful. This might be because you haven’t collected enough
data per se, or you haven’t collected enough data in the right way. Sometimes this is unavoidable.

Let’s imagine that I was really interested in whether the length of time you had spent in academia
made you grumpy, but I also felt like age may also play some role.
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The first thing I’m going to do is transform fpub (the year in which the person published their first
paper) because I find it confusing. Instead I’ve calculated the number of years from when the photo
was taken (2017) since the person started publishing - time in academia if you like. Again, the model
would be identical if we fitted fpub or ypub I’ve just reparameterised it so I can make better sense
of it. Now if I want to test whether age and/or time in academia makes you grumpy the natural
thing to do
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would be to add age to the model.
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We’ve gone to the p-values again! Nothing doing. But wait, the coefficient for ypub is negative
and is quite larger in magnitude. If we multiply our coefficient by 40 we get -3.23: If Alex had been
publishing as long as Deborah we would expect him to look around 3 units happier. That’s our
best estimate and its a big effect. But the standard errors are so large that the confidence intervals
suggest that he could be up to 14 units happier or 7 units grumpier. Previously, we suggested that
our estimate of the effect of time in academia was perhaps a little bit imprecise and we might want
to collect some more data before making firm conclusions. By adding another covariate we’re now
saying that our estimate is so noisy we might as well ignore it and state we have no real idea what
the effect of time since publishing is.
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We can see this graphically too if we plot our predictions and their standard errors.
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If we plot the confidence intervals it looks even worse. When making this plot I’ve calculated the
expected grumpy score for people that started publishing at a range of dates, but I’ve held their
age constant. I’ve assumed their age is 48; the mean age of those photographed. This is what the
coefficient in a linear model is telling us. If we held age constant and photo type constant what
would be the effect of ypub on the grumpy score: it is trying to estimate the causal effect of ypub
(and I emphasise the word trying, it’s not an experiment). It makes sense then that it is hard to
estimate this effect, because if we held age constant there would not be much variation in first
publication date. For example, there are four people aged 38 but they have been publishing for a
restricted range of years (10-14) and so we only have a tiny bit of variation in time in academia to
work with. If two variables are strongly correlated it can be hard to estimate the independent effects
of each on the response and so the standard errors on the coefficients are large. The problem is that
you might come to the conclusion from this summary table that a) neither variable has an effect on
the response (if you look at the p-values) or that b) the uncertainty on the coefficients are so large
that we cannot really say whether either variable has an effect (if you look at the standard errors).
In fact, although you might not have much power to estimate their independent effects you may
have quite a bit of power to estimate their combined effect. For example, rather than predicting the
expected score holding the age constant at 48 lets let age vary at the same time.
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So these are our estimates of expected values and confidence intervals for someone who started
publishing 5 years ago and who is aged 27, and over here for someone who started publishing 45
years ago and is aged 67. You can see that the confidence intervals are reasonably tight now, and
perhaps you might be happy claiming that years in academia probably doesn’t have major effects
on grumpiness, the confidence intervals don’t include big shifts in grumpiness across the range of
values on the x-axis. So what should we do when we have a situation like this and how do we know
we have a situation like this?
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Before we address this issue I want to briefly discuss two important concepts, accuracy and precision.
In every day speech these two words have pretty much the same meaning but in statistics they have
very different meanings.
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Imagine you are trying to estimate a pair of parameters, and the centre of this bull’s eye represents
their true values.
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You’ve then collected some data and obtained estimates of the two parameters. You only have one
estimate,
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but you could imagine a distribution of possible estimates: the sampling distribution. Its a little
different from what we saw before, because previously we thought about the sampling distribution
for a single parameter rather than the sampling distribution of a pair of parameters but I hope the
plot makes intuitive sense. In this example the sampling distribution is clustered tightly around the
true values
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the combination of data you have and the model you have used have resulted in estimates that are
accurate (they are actually unbiased - they are on-target) and they are also precise (there’s not much
variability in the estimates). This is a good position to be in.



Accuracy and Precision

Accurate and Precise

Biased but Precise

Accurate but Imprecise

Biased and Imprecise

Jarrod Hadfield Linear Models

Accuracy and Precision

Accurate and Precise

Biased but Precise

Accurate but Imprecise

Biased and Imprecise

2
0
2
5
-0
2
-1
8

Linear Models

Accuracy and Precision

Alternatively, we could have accurate estimates in that the centre of the sampling distribution is
aligned with the true values, but the estimates are quite imprecise (there’s quite a bit of variability)
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The opposite scenario is that the estimates are inaccurate - they’re biased - but they have high
precision. In this example the estimates are only biased for the parameter on the x-axis, where as
the estimate for the y-axis are both accurate and precise.
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The worst case scenario is when we have estimates that are both biased and imprecise. Now its easy
to see that the top left scenario is ideal and the bottom right scenario is the worst of the four. But
what about the other two: what do we care more about - accuracy or precision. In this example,
I think most of you would prefer the accurate but imprecise scenario over the biased but precise
scenario.



Accuracy and Precision

Accurate and Precise

Biased but Precise

Accurate but Imprecise

Biased and Imprecise

Jarrod Hadfield Linear Models

Accuracy and Precision

Accurate and Precise

Biased but Precise

Accurate but Imprecise

Biased and Imprecise

2
0
2
5
-0
2
-1
8

Linear Models

Accuracy and Precision

But what about this? A difficult choice!
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So let’s think about our example where age and time in academia are confounded, and let’s imagine
that in reality there was no effect of age but for every year you have been in academia you are scored
0.1 units more grumpy.



Confounding

Imagine that the true slope was 0.1 for ypub and 0 for age.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.02519 3.5331 0.8562 0.3982352

typegrumpy 1.85607 0.4680 3.9656 0.0003858

ypub 0.16201 0.1382 1.1720 0.2498523

age -0.06835 0.1373 -0.4977 0.6221295

−0.2 0.0 0.2 0.4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

βypub

β a
ge

Jarrod Hadfield Linear Models

Confounding

Imagine that the true slope was 0.1 for ypub and 0 for age.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.02519 3.5331 0.8562 0.3982352

typegrumpy 1.85607 0.4680 3.9656 0.0003858

ypub 0.16201 0.1382 1.1720 0.2498523

age -0.06835 0.1373 -0.4977 0.6221295

−0.2 0.0 0.2 0.4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

βypub

β a
ge

2
0
2
5
-0
2
-1
8

Linear Models

Confounding

Our bull’s eye is at 0 on the y -axis and 0.1 on the x-axis. What do you think the sampling distribution
of this pair of parameters looks like?
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Here I’ve sampled 100 replicate data sets according to our model and the ML parameter estimates
and then I’ve plotted the estimates made for each replicate data set. You can see that the sampling
distribution is strongly negatively correlated. To see why this is the case imagine that the two
variables were completely confounded - everybody starts publishing when they are 25 and so there is
one to one relationship between age and time in academia. Its clearly impossible then to say which
of the two variables is having an effect on the response, but we could estimate their aggregate effect.

Imagine the aggregate effect was represented by a bit of string and there is a mark on it representing
how the aggregate effect is actually partitioned between age and time and academia. There’s quite a
bit of information to estimate the length of the string, so let’s imagine we know the aggregate effect
(and therefore the length of the string) exactly. Let’s also imagine that in this case 1/3 of the effect
is due to age and 2/3rds is due to time in academia. We don’t have much information to partition
the effects of the two variables so our estimates are not going to hit this mark exactly, they have
poor precision. Now if you underestimate the mark, let’s say you estimate the contribution of age
to be 1/6 rather than 1/3 this means that you have overestimated the effect of time in academia
by the same margin: 2/3 +1/6 = 5/6. So the sampling errors are negatively correlated. If you
underestimate the effect of age you will overestimate the effect of time in academia, and vice versa.
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Now let’s imagine that I drop age from the model. Wonderful. The estimates are still clustered
around their true values but the precision is now much better.
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If, on the other hand, we drop ypub from the model its a bit of a disaster. The estimates are nice
and precise but they’re tremendously biased. We’re incorrectly interpreting the ypub effects as age
effects.
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In reality you haven’t repeated the study 100 times
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You’ve just done it once. Let’s say this study in red here.
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We just have a pair of point estimates.
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That we can see in the coefficient table. We also have the standard errors that tells us the sampling
standard deviation along each axis. There isn’t anything in the summary that tells us whether the
sampling errors for the two parameters are correlated or not, but we can find that information out.
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This red ellipse here is a graphical representation of the expected sampling distribution obtained
from the model fit. I expect 95% of the estimate to lie within this ellipse if the true values were
equal to their maximum likelihood estimates. You can see that its shape is nearly identical to the
sampling distribution I obtained via simulation.
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When we test whether the effect of ypub is significant or not, we are asking whether our estimate is
likely to overlapped zero, and we can see this to be the case: large fractions of the ellipse lies either
side of the vertical red line.
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Likewise when we test whether the effect of age is significant or not, we are asking whether our
estimate is likely to overlap zero, and we can see this is likely: : large fractions of the ellipse lies
either side of the horizontal red line.
So what are you going to do in this situation?



Confounding: Diagnosis

Variance Inflation Factor

> car::vif(m1)

typegrumpy ypub age

1.00000 57.61506 57.61506

Compares the sampling variance to those that would have been
observed had the predictors been uncorrelated

Sampling correlations

> sC <- summary(m1)$cov.unscaled * summary(m1)$sigma^2

> cov2cor(sC)

(Intercept) typegrumpy ypub age

(Intercept) 1.0000 -0.0662 0.9651 -0.9889

typegrumpy -0.0662 1.0000 0.0000 -0.0000

ypub 0.9651 0.0000 1.0000 -0.9913

age -0.9889 -0.0000 -0.9913 1.0000

Correlations large in magnitude indicate pairs of effects that are hard
to separate
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Confounding: Diagnosis

The first thing you need to do is to diagnose whether confounding is likely to be an issue or not.
Sometimes its obvious - of course there has to be a strong correlation between how old you are
and how long you’ve been publishing - but sometimes its not so obvious. You could have a focal
predictor that is only moderately correlated with several other predictors, but in aggregate those
other predictors explain a lot of variation in the focal predictor. Variance inflation factors are a good
place to start.
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They are implemented in the car package
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and they say by what factor the sampling variances are increased due to partial confounding with
other variables. We can see that the inflation for ypub and age is high (with complete confounding
they would be infinite) and that the sampling variances are 57 times higher than what they would be

had all variables been uncorrelated. The square root of this number (
√
57 = 7.5) tells us that our

standard errors could be reduced by a factor of 7.5 had we been able to achieve this. The variance
inflation factor for grumpy is one, which is the ideal scenario, and this arises because we have used
an experimental design; every person was assessed under grumpy and non-grumpy conditions. The
one issue with variance inflation factors is that they don’t tell you what other variables are causing
the inflation. Here we know that the variance inflation for ypub is caused by its strong association
with age but with more complicated models this might not be so obvious.
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The other possibility is to look at the expected sampling correlations between pairs of estimates;
strong correlations (either positive or negative) between a pair of estimates tell us that it is hard to
separate the effects of those variables on the response.
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The ellipse I plotted earlier was essentially a graphical representation of the sampling variances and
covariances, which can be extracted from most models. Because the sampling covariances depend

on the scale of the predictors[1] it is easier to interpret the correlations,

[1] If the predictor is measured in grams, then the sampling variances are in units of (units of the

response per gram)2 and so may differ a lot between predictors. For example, if the same predictor
was measured in kilos, the sampling variance would go down by a factor of a million.
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and we can see that the sampling errors for the grumpy effects are not correlated at all with the
ypub and age (by design) but the sampling errors for ypub and age are strongly correlated. We can
also see that they’re strongly correlated with the intercept - and we saw that at the start of this
lecture. This is because the intercept is the expected score for happy photos when both ypub and
age are zero, and because the actual joint distribution of ypub and age are far from these values,
small shifts in the slopes drive big changes in the expected values at ypub=age=0.
The question then is what do we do if we have variables that we think are heavily confounded?
There is no silver bullet, but
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Confounding: Solutions

Select age or fpub effects

Retain the most biologically plausible variable and be honest (’we
could not reliably separate the effects of ypub from age’)

Estimate Std. Error t value Pr(>|t|)

ypub 0.09382 0.018 5.211 9.895e-06

Fit both independently and retain the model with highest likelihood
and be honest (because you could have selected the wrong term)

Estimate Std. Error t value Pr(>|t|)

age 0.09121 0.0182 5.013 1.777e-05
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Confounding: Solutions

The first possibility is to only use one of the two predictors from a pair that are strongly correlated.
If I knew in advance of fitting the model that two predictors are likely to be so strongly correlated
that separating their effects is not worth attempting, I would probably make a decision in advance
of model fitting and choose the variable that I think is most important biologically.
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Confounding: Solutions

You could of course do this after fitting the model - so you could retain the effect of years publishing
if you think this is more likely to be the driver than age - but in both cases I would be honest and
say the effect could also be driven by age but you didn’t have the power to separate them.
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Confounding: Solutions

Rather than selecting a variable based on biological intuition you could let the computer do it for
you. So you could fit two models, one containing age as a predictor and one containing ypub as a
predictor and select the model with the highest likelihood. However, as before you have to be honest
about the difficulty of separating the two effects because the likelihoods might be very similar and it
would be easy to select the wrong model just by chance. For example, in our simulated data set we
set the ypub coefficient to 0.1 and the age coefficient to 0, yet here the model returning the highest
likelihood is by chance actually the one with age fitted.
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Confounding: Solutions

Rather than selecting a variable based on biological intuition you could let the computer do it for
you. So you could fit two models, one containing age as a predictor and one containing ypub as a
predictor and select the model with the highest likelihood. However, as before you have to be honest
about the difficulty of separating the two effects because the likelihoods might be very similar and it
would be easy to select the wrong model just by chance. For example, in our simulated data set we
set the ypub coefficient to 0.1 and the age coefficient to 0, yet here the model returning the highest
likelihood is by chance actually the one with age fitted.
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Be agnostic about age or ypub effects

Retain both and justify with the joint test βage = βypub = 0

F-test: Multi-parameter version of the t-test.

> anova(update(m1, . ~ . - age - ypub), m1)

Pr(>F)

5.944669e-05

Wald test: Multi-parameter version of the z-test.

> aod::wald.test(sC, coef(m1), Terms = 3:4)

P

1.526501e-06

Likelihood-ratio test:

> anova(update(m1, . ~ . - age - ypub), m1, test = "LRT")

Pr(>Chi)

1.526501e-06

Jarrod Hadfield Linear Models

Confounding: Solutions

Be agnostic about age or ypub effects

Retain both and justify with the joint test βage = βypub = 0

F-test: Multi-parameter version of the t-test.

> anova(update(m1, . ~ . - age - ypub), m1)

Pr(>F)

5.944669e-05

Wald test: Multi-parameter version of the z-test.

> aod::wald.test(sC, coef(m1), Terms = 3:4)

P

1.526501e-06

Likelihood-ratio test:

> anova(update(m1, . ~ . - age - ypub), m1, test = "LRT")

Pr(>Chi)

1.526501e-06

2
0
2
5
-0
2
-1
8

Linear Models

Confounding: Solutions

The second option is to retain both predictors, and test whether either predictor has an effect on
the response, without caring which one is the driving variable.
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The null hypothesis is then that both regression coefficients are zero.
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We plotted this graph earlier; the small red dot is our estimate from the simulated data, and the red
ellipse depicted the sampling distribution of the estimates around the estimate. 95% of estimates
should fall within the ellipse if the true value was equal to the estimated value.
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Our null-hypothesis is that both coefficients are zero, which is this larger red dot. In a linear model
the shape of the sampling distribution does not change with the mean (with other types of model
this is only true as the sample size becomes large, hence the tests are approximate)
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and so this ellipse now describes the sampling distribution had the true effects been zero. You can
see that our estimated value lies outside of the 95% probability region and is therefore significant at
the 5% level.
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When testing a single parameter we saw that the t-test is exact when the response variable is normal,
but the z-test (which ignores estimation uncertainty in the residual standard deviation) is usually very
accurate unless sample sizes are pitiful. The multi-parameter analogue of the t-test is the F-test,
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which can be performed using the function anova and comparing the full model with a model with
the terms to be tested deleted. I’ve done this using the function update which takes our original
model and fits a new model including everything in the original model (the dot) but with ypub and
age removed (by having a minus sign).
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For more complicated problems the sampling distribution for a set of parameters is not known, but
we might know that as sample sizes increase the sampling distribution will start to look multivariate
normal, with known (co)variances. In the context of a t-test this would be like setting the degrees of
freedom to be very very high indicating that we know the residual standard deviation exactly. When
testing a single parameter this is known as a Z-test, and the Wald-test is the multiple parameter
equivalent.
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We can fit a Wald test using the function wald.test[1] from the aod package. We give it the matrix
of sampling (co)variances for our parameters, which we obtained earlier (sC), and our point estimates
(using the function coef) and then the positions of the effects we want to test (positions 3 and 4
refer to ypub and age respectively). In relative terms the p-values are quite discrepant (the p-value
of the Wald-test is about 39 times lower) but this is because the t and normal distribution differ
most in their tails. Had the estimates been less extreme, lying in the main body of the sampling
distribution under the null-hypothesis, their p-values would be less discrepant.

For example, if the estimates were halved in magnitude then we would have obtained the p-values
0.05 and 0.04 for the F-test and the Wald test respectively.

[1] Note that the function wald.test can also perform F-tests if the residual degrees of freedom
(the sample size minus the number of coefficients in the model) is specified and the anova function
can also perform Wald-tests when the argument test="Chisq" is passed. However, in some cases
an anova method might not be written for the model fitting function you use, and so it is good to
see how you can do it ’by hand’.



Confounding: Solutions

Be agnostic about age or ypub effects

Retain both and justify with the joint test βage = βypub = 0

F-test: Multi-parameter version of the t-test.

> anova(update(m1, . ~ . - age - ypub), m1)

Pr(>F)

5.944669e-05

Wald test: Multi-parameter version of the z-test.

> aod::wald.test(sC, coef(m1), Terms = 3:4)

P

1.526501e-06

Likelihood-ratio test:

> anova(update(m1, . ~ . - age - ypub), m1, test = "LRT")

Pr(>Chi)

1.526501e-06

Jarrod Hadfield Linear Models

Confounding: Solutions

Be agnostic about age or ypub effects

Retain both and justify with the joint test βage = βypub = 0

F-test: Multi-parameter version of the t-test.

> anova(update(m1, . ~ . - age - ypub), m1)

Pr(>F)

5.944669e-05

Wald test: Multi-parameter version of the z-test.

> aod::wald.test(sC, coef(m1), Terms = 3:4)

P

1.526501e-06

Likelihood-ratio test:

> anova(update(m1, . ~ . - age - ypub), m1, test = "LRT")

Pr(>Chi)

1.526501e-06

2
0
2
5
-0
2
-1
8

Linear Models

Confounding: Solutions

We could also compare the two models using a likelihood-ratio test, which again is an approximation
that improves as the information in a data-set about the parameter to be tested increases.
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We can view this as a form of model comparison, and again we can pass our full model and reduced

model to anova and specify that we want to to a likelihood ratio test (test="LRT")[1].

[1] You can see that the likelihood ratio test (test="LRT") and z-test (test="chisq") give identical
p-values. When the parameter to be tested is a regression coefficient in a linear model, the tests
are equivalent but this is because anova doesn’t actually fit what I would call a standard likelihood
ratio test. Lets say we we were fitting a simple model with an intercept β and residual standard
deviation σ. Lets subscript parameter estimates from the null model with a zero, so σ̂0 and β̂0 which
is fixed at zero. We’ll subscript with a one the parameters from the full model: σ̂1 and β̂1 where
β̂1 is free to take any value. The ’standard’ likelihood ratio test compares the likelihood of the data
under σ̂0 and β̂0 = 0 (so dnorm(data, 0, σ̂0))) with that under σ̂1 and β̂1 (so dnorm(data, β̂1,

σ̂1))). The likelihood ratio test performed by anova actually uses the likelihood under σ̂0 and β̂1

(so dnorm(data, β̂1, σ̂0))). Doing a standard likelihood ratio test gives a slightly different answer:
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> anova(m1)

Df Sum Sq Mean Sq F value Pr(>F)
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age 1 0.488 0.488 0.2477 0.6221295
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ypub 1 2.708 2.708 1.3736 0.2498523

Residuals 32 63.091 1.972
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A word of caution is required at this point, because the F-test that we have done asks whether age
and/or ypub explain significant variation in grumpiness scores after accounting for all other terms
in the model. The single-parameter version of this is the t-test results presented in the summary
table, and we saw earlier that age explains no additional variation after accounting for ypub and
vice-versa. Sometimes people refer to this test as a type-III test.



Confounding: Sequential tests

> anova(m1)

Df Sum Sq Mean Sq F value Pr(>F)

typegrumpy 1 31.005 31.005 15.7258 0.0003858

ypub 1 52.321 52.321 26.5374 1.279e-05

age 1 0.488 0.488 0.2477 0.6221295

Residuals 32 63.091 1.972

> anova(update(m1, . ~ . - ypub - age + age + ypub))

Df Sum Sq Mean Sq F value Pr(>F)

typegrumpy 1 31.005 31.005 15.7258 0.0003858

age 1 50.102 50.102 25.4115 1.764e-05

ypub 1 2.708 2.708 1.3736 0.2498523

Residuals 32 63.091 1.972

Jarrod Hadfield Linear Models

Confounding: Sequential tests

> anova(m1)

Df Sum Sq Mean Sq F value Pr(>F)

typegrumpy 1 31.005 31.005 15.7258 0.0003858

ypub 1 52.321 52.321 26.5374 1.279e-05

age 1 0.488 0.488 0.2477 0.6221295

Residuals 32 63.091 1.972

> anova(update(m1, . ~ . - ypub - age + age + ypub))

Df Sum Sq Mean Sq F value Pr(>F)

typegrumpy 1 31.005 31.005 15.7258 0.0003858

age 1 50.102 50.102 25.4115 1.764e-05

ypub 1 2.708 2.708 1.3736 0.2498523

Residuals 32 63.091 1.972

2
0
2
5
-0
2
-1
8

Linear Models

Confounding: Sequential tests

However, if you just pass a model to the function anova without an accompanying simplified model,
it will perform a sequential test which asks whether a predictor explains significant variation after
accounting for any previous terms in the model. Sometimes people refer to this as an incremental
or type-I test. So in our model ypub appeared in the formula prior to age, and so the sequential
test first tests for the effect ypub after accounting for the effect of being grumpy or not, and then
second tests whether age has an effect after accounting for the effect ypub. You can see that ypub
has a significant effect, but after accounting for it, age does not.
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Confounding: Sequential tests

You could also reverse the order of the terms in the model, so here I’ve updated our original model by
including everything in the original model (the dot) then removed ypub and age (by having a minus
sign) and then added them back in (by having a plus sign) but in reverse order. Now we test for
the effect of age after accounting for the effect of being grumpy or not, and then after accounting
for the effect of age we test whether ypub has an effect. We come to the opposite conclusion, but
at least we understand why.

In R, Type-I tests will always test the main effects prior to any interaction terms, no matter which
order they are specified in (for example, applying anova to the model grumpy+fpub+grumpy:fpub
gives the same output as grumpy:fpub+grumpy+fpub with the interaction being tested last. An
intermediate type of test is a type-II test which is implemented in the function Anova from the
car package. This is a useful but underused test. Here, all main effects are added simultaneously,
and all two way interactions are added simultaneously, then three-ways and so on. This offers a
nice way of testing for the main effects without making arbitrary choices about which value of the
covariate to evaluate them at, which we saw earlier. However, it doesn’t force you to sequentially
test main effects. For example, a Type-II test of the model grumpy+ypub+age+ypub:grumpy first
tests grumpy, ypub and age simultaneously (and presumably finds that neither have a significant
effect) and then tests whether the interaction term can explain additional variation in the response.
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Accuracy and Precision

By analysing a model where two of the predictor variables are heavily confounded, we touched on a
number of themes that might influence the accuracy and precision of our results. More generally,
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We can give a summary of those things that will reduce the precision of our estimates, the most
obvious being small sample sizes.
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Also, if our predictor variable wasn’t very variable it would be hard to get accurate estimates of the
effect of that variable. For example imagine I wanted to test whether the height of people affects
some outcome, and the heights of the people I chose to study only ranged from 179cm to 180cm.
It would be hard to get accurate estimates of the effect compared to picking people with a wider
range of heights.
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Accuracy and Precision

In the context of categorical predictors lack of variability implies most observations are only in one
group. For example if we were interested in whether a new diet had some impact a study would
not be very powerful if we only had 5 people on the diet, irrespective of whether we had a million
controls.
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As we saw confounding can severely affect precision
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because essentially it reduces the amount of independent variation in the predictor variables, so if
they are strongly correlated in the case of continuous variables, or in the case of categorical variables
if combinations of levels are not equally represented. For example, if those on the diet were nearly
all men, but most of the controls were women.
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Accuracy and Precision

Finally, high residual variation reduces precision because its hard to detect differences when there is
a lot of noise.
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In an experimental setting you might be able to lower the noise by trying to control conditions as
carefully as possible, but sometimes you can try and control for the noise statistically. For example,if
people were measured before being put on the diet and then again after, looking for differences
between time-points controls for any noise that affects an individual at all time points. Later we’ll
see how this can be done with mixed-effect models.
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Bias is often a more difficult problem to fix, particularly in a non-experimental setting.
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For example, you could have measured all relevant variables but had fitted the wrong model to the
data.



Accuracy and Precision

Low Precision

Small sample size
Predictors not very variable

Little variation in continuous predictors
Levels of a categorical predictor not equally represented

Predictors confounded
Little independent variation in continuous predictors
Combinations of levels not equally represented

High residual variation
Conditions not standardised experimentally
Conditions not standardised statistically

Bias
Wrong model
Unmeasured variables

No Control
No Randomisation

Poorly measured variables
Predictors measured with error
Predictors/response missing not at random

Jarrod Hadfield Linear Models

Accuracy and Precision

Low Precision

Small sample size
Predictors not very variable

Little variation in continuous predictors
Levels of a categorical predictor not equally represented

Predictors confounded
Little independent variation in continuous predictors
Combinations of levels not equally represented

High residual variation
Conditions not standardised experimentally
Conditions not standardised statistically

Bias
Wrong model
Unmeasured variables

No Control
No Randomisation

Poorly measured variables
Predictors measured with error
Predictors/response missing not at random

2
0
2
5
-0
2
-1
8

Linear Models

Accuracy and Precision

More commonly, there are probably predictor variables out there that affect the response variable
and that you haven’t measured which are also correlated with a predictor of interest. The effect of
the predictor is then biased by this unmeasured variable, as we saw in the simulated data when we
fitted age instead of ypub.
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This is much less likely to happen in an experimental setting, where employing controls and randomi-
sation can ensure that an experimental treatment is not correlated with some unmeasured variable.
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Lastly it can happen when either the data or predictor variables have been measured poorly.
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If predictors have been measured with error then we tend to underestimate the true effect
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and we get both positive and negative bias if either the response variable and/or the predictors
haven’t been measured on some individuals and the probability of not being measured depends on
what their response would have been.


