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Lecture 1

This is going to be an intensive 5 days and what I hope is that by the end you a) have a good
understanding of the basic principles that underlie modern statistical inference and b) a thorough
understanding of the basic models often encountered when dealing with biological data and c) an
awareness of the common problems that are often met and how best to deal with them. Many of
you will feel that you know the basics, and may get impatient to move on to the more advanced
material, which we will cover in the later lectures.
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Lecture 1

Generalised Linear Mixed Models

Here’s a shortlist of the type of advanced models we might cover. Some of these models I’m sure
you’re familiar with, some you’d probably like to be more familiar with, and there’s some you’ve
probably never heard of but they’re useful nevertheless. It’s a long shortlist, with names that
are designed, or at least retained, because they can intimidate and scare the ignorant. However,
the differences that exist between these models are absolutely tiny. They are all special cases of
Generalised Linear Mixed Models. If you understand the basics - if you can fully understand a paired
t-test - you can understand with little extra effort a Generalised Linear Mixed Model and therefore
a whole suite of advanced statistical modelling techniques. So I urge you not to get impatient with
the basics because they are the building blocks for everything else.
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Lecture 1

Course Outline

Now it’s going to be handy for me to know at what level people are and what types of analysis
people are going to need. Probably the most useful thing to know is how many people are doing
’proper’ experiments; randomised experiments with controls? You are the lucky ones, if you’ve been
clever with your experimental design you don’t need to be clever with your stats. How many people
are working with non-experimental data? You are going to have to become good statisticians to
make sense of your data. How many people are familiar with linear models? How many people
are familiar with generalised linear models, so working with Poisson or binomial data? How many
people have data like this but are not yet comfortable with analysing it? How many people know
what random effects are and have used mixed models?
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Course Outline

So this morning we’re going to start with the fundamentals of statistical inference, and perhaps, if
we have time we’ll explore what a linear model is.
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Course Outline

Tomorrow we’ll look a bit more into linear models
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Course Outline

and on Wednesday we’ll move on to Generalised Linear Models. So these are models that are not
only good for analysing continuous data that are close to being normally distributed, but also other
types of data like count data.
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Course Outline

On Thursday we’ll introduce something called mixed effect modelling,
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Course Outline

which we’ll cover in more detail on Friday. It takes a long time to become proficient at these types of
model, but as you saw in the previous slide, once you understand them you have a lot of statistical
tools at your disposal.
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Course Outline

Each afternoon we’ll do some computer practicals on some data sets I’ve collated and we’ll start with
some simple data from which we want to answer simple questions, and work up to more complex
data and more complex questions.
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Course Outline

On Friday afternoon, if you still have some energy, I’ll let you try and put some of the things you’ve
learnt into practice with your own data.
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Lecture 1

The basics

OK, today, we’re going to start by asking a superficially easy question - what do we want to learn
from the data we have collected?
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The basics

I want to persuade you to model your data; to construct a mathematical model of how you think
the world works. We’ll look at the primary ingredients that are needed; the model, the parameters
of that model that we would like to learn about, and the data that we’ve collected in the hope that
they will tell us something about these parameters and perhaps the plausibility of the model itself.
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Lecture 1

The basics

We are going to have to understand a little bit about probability, and about probability distributions,
whether that is the probability of our data (the data distribution), the probability of obtaining
some parameter estimate (the sampling distribution) or the probability of some value being the true
parameter value (the posterior distribution).
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The basics

We are going to try and understand these concepts using data on grumpiness that people in IEB
collected a few years ago, and using simple techniques such as t-tests and linear models.
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What do we want to learn from the data?

OK, let’s start with some data we’ve already collected. I took two photos of people that worked
in IEB - one when they were grumpy and one under ’normal’ conditions. This is Matt Bell under
normal conditions and Laura Ross when grumpy.
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What do we want to learn from the data?

I then set up a survey in SurveyMonkey and asked people to assess the grumpiness of those pho-
tographed. 122 people took part. Now there’s three types of question I could ask of these data.
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What do we want to learn from the data?

In the first instance I might just want to test a hypothesis: does someone in a grump look more
grumpy? I don’t care how much more grumpy they look, I just want to know do people look
different when in a grump. This is the type of question many people are trained to answer - they
do a statistical test and their eyes go straight to the p-value.
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What do we want to learn from the data?

We might want to ask a more nuanced question. How much more grumpy do people look when
they’re in a grump? Is it a big difference or is it a small difference? If our best answer is a big
difference how confident are we in that answer? Now, there is a place for pure hypothesis testing
in science, but I think that most scientists most of the time should be interested in a quantitative
understanding. They should be using statistical models not statistical tests. That’s not to say you
shouldn’t hypothesis test, but it should be done within the context of this richer form of inference.
For example, if our best answer is there’s a big difference but we were not very confident in it, I
might then ask, are we at least confident that there is some difference - a hypothesis test.

If you are not working with experimental data, or you are, but the experimental design is not perfect,
then you might need to put other things in the model in order to get a better answer. Does it matter
that some of the respondents know the people being photographed? If someone is generally grumpy
might we score their photo as grumpy even if they had a beaming smile? Would this affect our
answer? When you become proficient at statistical modelling you will see that you can ask clever and
informed questions of your data and get a much deeper insight into the biology of the problem than
you could have, had you been restricted to simple hypothesis tests. It is obtaining a quantitative
understanding of our problem that we’re going to focus on in this course.
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What do we want to learn from the data?

The final type of question you might ask of a body of data - and one we’re not really going to focus
on a lot - is prediction. What’s the best way to use these data to predict whether someone is grumpy
or not if we were given a new body data like the one we’ve previously collected? How best to use
respondent’s grumpiness scores to correctly classify people as being in a grump or not? There’s a
whole range of techniques - such as machine learning - that try and maximise the predictive power
of the model. They’re used by companies such as amazon and google to sell you crap you don’t
want or doesn’t work, like degrumping pills. They have some utility in science but the problem is
they don’t tell you much about the biology of the problem. They can have a lot of complicated
high-order terms that are hard to interpret, and for a scientist, I think a statistical model is there to
extract meaning from the data in the simplest and most robust way possible.

So, we are really going to focus on this middle type of question. How can we model our data in a
way that gives us a quantitative understanding of what is going on?
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Ingredients

To do this, the first - and by far the most important - ingredient is data, and generally we classify
these into two types.
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Ingredients

A response variable - the set of observations we are primarily trying to explain. So in our data this is
the set of scores associated with our photographs. So these are the scores of the respondents that
rated this photo of Laura. Most people thought Laura looked very happy, a few people, presumably
with expressive agnosia, give her a 10 out 10 on the grumpy scale.
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Ingredients

We might also have some predictor variables that may explain some of the patterns we see in our
response variable. These might be discrete predictors like whether the respondent is in IEB or not,
or whether Laura is actually grumpy in this picture or not (this is grumpy Laura by the way). They
might include continuous predictors such as age of the person photographed or the respondent.
Sometimes these two types of data are given different names, such as dependent variable and
independent variable but I always have to remind myself which is which. Some times predictor
variables are called moderator variables or covariates, but I’ll try and keep to response variable and
predictor variables throughout.
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Ingredients

The next thing we’re going to need is a model - some idea about why these data look the way they
do. We might start by specifying what type of distribution the response variable comes from. In
this particular case it might actually be quite challenging - the data are on an ordinal scale that is
bounded by 1 and 10 - so it might be quite hard to come up with a stochastic process that would
generate data like this. We also need to make choices about which predictor variables to include in
the model and make choices about how they affect this distribution.



Ingredients

Data

Response variable(s)
Predictor variable(s)

Model

What distribution do the data
follow?
How do the predictors change the
data distribution?

Parameters

Location
Dispersion

0

20

40

1 2 3 4 5 6 7 8 9 10

Grumpy Score

C
ou

nt IEB
NO
YES

Jarrod Hadfield Lecture 1

Ingredients

Data

Response variable(s)
Predictor variable(s)

Model

What distribution do the data
follow?
How do the predictors change the
data distribution?

Parameters

Location
Dispersion

0

20

40

1 2 3 4 5 6 7 8 9 10

Grumpy Score

C
ou

nt IEB
NO
YES

2
0
2
4
-0
2
-1
9

Lecture 1

Ingredients

Once we have a model it will be characterised by a number of parameters, and it’s these parameters
we want to learn something about. Often we can think about the parameters determining the
location of the distribution - so for example we might want to consider a parameter that would
allow non-IEB respondents to have a different average score than IEB respondents - or we can think
about parameters determining the dispersion, so we might think the two types of respondent have
the same average score but perhaps non-IEB respondents are more or less variable in their response.
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Probability Distributions

In order to do statistics well you need to have a solid grasp of probability distributions and about
uncertainty and randomness. This is a slippery subject and part of the confusion is that we use the
word ‘uncertainty’ for two radically different phenomena. This is a 10p piece - as far as I can tell
it’s just a normal 10p piece. If I flip it what’s the chance that it comes up heads? 50%.
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Probability Distributions

This is a plot of a probability density function (or more accurately a probability mass function, since
the outcomes are discrete). On the x-axis we have the possible outcomes; the number of heads,
which for one flip of the coin can be either 0 or 1. On the y-axis we have the probability of getting
that outcome. The chance of having no heads (a tail) is 50% and the chance of flipping a head is
50%. If I flipped the coin twice and counted the number of heads what would the probability mass
function look like?
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Probability Distributions

The chance of no heads is 0.5 squared (25%). The chance of flipping a head then a tail is 25% and
the chance of flipping a tail then a head is 25% so together the chance of one head is 50%. Finally,
the chance of flipping two heads is 0.5 squared (25%).
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Probability Distributions

This type of uncertainty is known as aleatoric uncertainty; it is about the frequency of events under
repeated sampling (tosses of the coin). Now lets say I had flipped the two coins and I can see the
outcome but you can’t. What is the chance that I’ve flipped one head and one head only? 50%
again, right? But, this number 50% is referring to something completely different than it did before.
The coins have been tossed; there is either one head or there is not with probability 1. The value of
50% that you are quoting is about uncertainty in your knowledge.
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Probability Distributions

It’s called epistemic uncertainty; for you the probability is 50% that there is one head but for me
the probability is 100% that there is 2 heads. And now the probability that there is one head has
changed for you too: it’s 0%.
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When flipping a coin the outcome is discrete and so the function that describes the probability of
each outcome is called a probability mass function. This is the equivalent function for a continuous
outcome that has a normal (or Gaussian) distribution - I’m sure your familiar with the probability
density function of the normal. The chance of getting a specific value under the normal distribution,
let’s say 0.373244282955052, is? Well, it’s vanishingly small. So you can’t just read off a probability
on the y-axis and find out the probability of an outcome like we did with the probability mass function
we saw previously. However, relative differences are meaningful, so the probability density at a value
of 4 is about 0.25 and the probability density at a value of 2 is about 0.04 so a value of 4 is about
6-7 times more likely than a value of 2.
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Perhaps an easier way for you to think about a probability density function is to chop it up into little
bits and think about it as a probability mass function. So for example, the probability of y being
between 3.9 and 4.1 is equal to the area under the curve.
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And this area is about 0.05, so there’s a 5% chance that a value drawn from this distribution is
between 3.9 and 4.1. We could represent this area as a rectangle.
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And if we liked we could also calculate the probability of lying in other equally spaced intervals so we
had something that looked like a histogram. As with the probability mass function the area under
this curve is equal to one; y must take some value with probability one. As we make these intervals
smaller and smaller the histogram starts to get closer and closer to the probability density function,
and is exactly equal to it when the interval is an infinitesimally small amount (often denoted dx)
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Ok, so this is our normal distribution - it has a mean of around 4.8 and a variance 1.9.
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Lets say we observed some data that were generated from this distribution.
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Now of course the difficult thing is we don’t know what distribution our data came from. We just
have the data and we would like to use these data to try and understand something about the
process that gave rise to them. One possibility would be to make a guess
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So lets say we think it could be a normal distribution with a mean of 5.3 and a variance of 2.3.
It is worth spending a bit of time on the notation. µ and particularly σ2 are standard notation
for the mean and variance. I have subscripted these quantities with a D to indicate they are the
parameters of the data distribution. It is very important that you realise that these are parameters
of the underlying distribution (often called population parameters): µD is not the mean of the data
you have observed (the sample mean) but the true underlying mean. The hat is standard notation

for ‘an estimate of’ and so µ̂D is an estimate of the true underlying population mean.
So how plausible is a mean of 5.3 and a variance of 2.3? Well what we could do is ask what is the
probability of observing these data if this were true: what is the likelihood of the data under this
scenario?
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As we saw earlier the chance of obtaining exactly these values is vanishingly small, but if we want to
make relative statements then we can use the probability density. So we can read off the probability
density for our smallest observed value (y=2.2)
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which is about 0.03. When we are talking about the probability of our data under some model we
usually use the word likelihood rather than probability.
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you can calculate this in R using the dnorm function. The first argument is the value for which you
want to calculate the density, the second argument is the mean of the distribution and the third
argument is the standard deviation of the distribution. The standard deviation is the square root of
the variance so in this case sqrt(2.3)=1.5.
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we could then go to the next value (y=2.99) and calculate its density which is about 0.08
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and we can multiply these two numbers together. We are assuming that these data are drawn
independently from this distribution and so we can multiply their probabilities together to get the
probability of observing both these values. As the number of data points grows this product starts
to become very small and so



Maximum

Likelihood

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

y

D
en

si
ty

logL=−5.90

µ̂D = 5.3

σ̂2
D = 2.3

> dnorm(3, 5.3, 1.5)

0.0814022

µ̂D = 4.1

σ̂2
D = 1.9

Jarrod Hadfield Lecture 1

Maximum

Likelihood

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

y

D
en

si
ty

logL=−5.90

µ̂D = 5.3

σ̂2
D = 2.3

> dnorm(3, 5.3, 1.5)

0.0814022

µ̂D = 4.1

σ̂2
D = 1.9

2
0
2
4
-0
2
-1
9

Lecture 1

Maximum

Likelihood

it’s easier to work with the log of the likelihood[1].

[1] The log transformation is a monotonic transformation which means that if we increase x , log(x)
also increases, and if we reduce x , log(x) also decreases. This means that values for which x is
maximised (or minimised) are the same values for which log(x) is maximised (or minimised) and
so the values that maximise the likelihood are the same values that maximise the log-likelihood.
However, the log-likelihood is easier to work with mathematically.
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We can then work our way through all the data, reading off the height of the probability density
function in each case, and we get the log-likelihood of observing these data given this distribution
(a value of -78.49). We could then try different distributions to see if the likelihood of observing the
data increases or decreases.
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So we could shift the mean slightly to the left (4.9) and we could make the variance considerably
smaller (0.5). We can see that under this distribution the log-likelihood, and therefore the likelihood,
of the data has gone down. It’s true that the observations close to the mean are more probable
under this new distribution, but the values further from the mean are very very unlikely to have arisen
given a variance of only 0.5. For example, the probability of observing our second smallest value of
y has gone down by approximately a factor of 6. So in aggregate these data are less probable under
this distribution than the one that preceded it.
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The techniques that we will use in this course use algorithms that can find the parameters (in this
case the mean and variance) that maximise the likelihood of the data. In this simple case the
algorithm is super simple and the parameters that maximise the likelihood are a mean of 4.8 and a

variance of 1.9 [1]. But these algorithms can be very general.

[1] In fact this is not the maximum likelihood (ML) estimator but the restricted maximum likelihood
(REML) estimator, but more on this later ....
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So for example, lets say these observations were one of two types; a grumpy type and a happy
type. In fact, these are the grumpiness scores (averaged over respondents) for each of the 44 photos
scored.



Maximum Likelihood

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

y

D
en

si
ty

logL=−71.12

Happy
Grumpy

µ̂D = 5.4

σ̂2
D = 1.9

> dnorm(3, 4.1, 1.4)

0.20831549

µ̂D = 4.1

σ̂2
D = 1.9

Jarrod Hadfield Lecture 1

Maximum Likelihood

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

y

D
en

si
ty

logL=−71.12

Happy
Grumpy

µ̂D = 5.4

σ̂2
D = 1.9

> dnorm(3, 4.1, 1.4)

0.20831549

µ̂D = 4.1

σ̂2
D = 1.92

0
2
4
-0
2
-1
9

Lecture 1

Maximum Likelihood

We could imagine wanting three parameters where the mean of the grumpy and happy photos can
differ (but their variance is assumed the same) and maximise the likelihood under this new scenario.
We can see that the data are more probable if the mean of happy photos is less than that of grumpy
photos. For example, the probability of our second smallest score, which was for a photo taken
under happy conditions, has nearly doubled.
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Maximum Likelihood

We could also allow the grumpy and happy photos to have different variances, and in this case the
variance of the happy scores is estimated to be considerably less than the grumpy scores. You will
notice that every time I added a parameter the likelihood has gone up and never went down. This
has to be true; each new parameter introduces a little more flexibility that allows the distribution to
capture more of the patterns in the data.

Now what type of uncertainty do you think the likelihood is dealing with? Aleatoric or Epistemic?

Aleatoric! There is no epistemic uncertainty; the data have been collected, I’ve plotted it and we
can all see it.
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Posterior Distribution

The likelihood is about aleatoric uncertainty. It is the probability of observing these (known) out-
comes had they been generated under the particular distribution we are considering. Now you might
wonder why on earth you would be interested in the likelihood. Why would I care about the prob-
ability of my data? I already have my data - whether the probability of those data is 0.01 or 0.5 is
largely irrelevant - these are the data I have. It’s not the probability of the data I’m interested in
but the process that gave rise to them.
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Posterior Distribution

The uncertainty you want to understand is the epistemic uncertainty about the parameter values
of your model. There’s no aleatoric uncertainty about a parameter, there’s a single underlying true
parameter value, and the uncertainty arises because you cannot directly observe it and only have
partial information about it through the data you observe. The distribution that characterises your
epistemic uncertainty about a parameter value is called a posterior distribution.
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Lecture 1

Posterior Distribution

This is the posterior distribution for the mean score for grumpy photos. We can see that the most
probable value of the true underlying mean is around 5.4. Values of around 5 or 6 are about half as
probable as this, and most likely the true value lies between 4.5 and 6.5. The posterior distribution
has a very easy straightforward interpretation. But the issue is that
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Posterior Distribution

the posterior distribution is proportional to (∝) the likelihood (see it is useful!) multiplied by
something called a prior. This is Bayes Theorem. The prior represents your state of knowledge (your
epistemic uncertainty) about the mean score of grumpy photos before you’d observed any scores.
Everybody loves the posterior distribution, most people hate the prior distribution; it might be hard
to accurately convey your prior epistemic uncertainty about the true value, and if you get it wrong
maybe the posterior distribution will be dominated by this error.

In some cases people are comfortable with using a prior. When I asked you what was the chance of
flipping a head from this coin you said 50% because you have a strong prior belief that coins are
fair. Let’s say I flipped the coin 4 times and got 1 head and 3 tails. If I wanted to calculate the
maximum likelihood estimate of the probability of flipping a head it would be 1 divided by 4 (0.25).
Do you think this is the best estimate? No, you would still prefer an estimate of 0.5, I think.

I’m not going to cover Bayesian statistics in this course. I’m going to cover Frequentist methods;
methods that attempt to say something about the plausibility of a particular parameter value from
the likelihood alone.
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Sampling Distribution

To understand how we can make inferences from the data alone - from the likelihood - we need
to understand something called a sampling distribution. Earlier we used maximum likelihood to
estimate the mean of the distribution from which we assumed our grumpy scores were drawn. Now
imagine that you redid the experiment keeping the sample sizes the same. There’s a few ways you
could do it. You could use the same photos but get a new set of respondents. You could get some
new photos of the same people and use the same set of respondents. The way in which you repeat
the experiment would reflect what you were interested in learning. Lets say we repeated it using
new photos of different people using a new set of respondents and from the new data we obtained
a second estimate of the mean. Then repeat the experiment again and obtain a third estimate, and
then a fourth estimate and so on. The resulting distribution of estimates is the sampling distribution.
Of course, in reality people don’t generate the sampling distribution empirically by repeating the
same experiment over and over again. What they do is work out what it would be under certain
assumptions.
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Lecture 1

Sampling Distribution

Now it requires a lot of mental gymnastics to understand what sampling distributions tell us about
the world, but I think it is important to realise that they are often similar to posterior distributions
and they are often interpreted informally as posterior distributions by scientists and even applied
statisticians. I think this is OK.
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Sampling Distribution

If you are a scientist rather than a statistician I want you to deceive yourselves that the sampling
distribution is a posterior distribution but at the same time I want you to keep it in the back of your
minds that you’re being deceitful. You’ve got more important things to do than disappear down this
rabbit hole.
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Sampling Distribution

OK - these are the mean scores for our 22 grumpy photos
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Lecture 1

Sampling Distribution

and these are our maximum likelihood estimates of the mean and variance. For a simple problem
such as this, the maximum likelihood estimate of the true underlying mean is the mean of the data

(µ̂D = ȳ) but it is important to realise these two quantities are fundamentally different things: ȳ

is a function of the data (a statistic, the sample mean in this case) and µ̂D is an estimate of the
population parameter µD - the true mean.
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Sampling Distribution

Now let’s discard the data and assume that our maximum likelihood estimate of the distribution is
actually the truth.
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Sampling Distribution

Lets also imagine that we were super lazy and we could only be bothered to collect one data point.

The best estimate of the mean µ̂D is to take the mean of our observations (the sample mean) and
so our best estimate is to simply use the number for the single data point we have. If we made
a million lazy people rerun the experiment, each only collecting one data point and getting their
own estimate what would the distribution of the estimates - the sampling distribution - look like?
It would be exactly equal to the data distribution. We are after all just pulling single numbers from
the data distribution.
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Lecture 1

Sampling Distribution

Let’s imagine we were now a bit less lazy and collected two observations (y1 and y2). Our best
estimate of the underlying mean is again the sample mean (y1 + y2)/2. If we kept pulling pairs of
observations from our data distribution (the black line), took their average, and then plotted their
distribution (the sampling distribution) what do you think it would look like?
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Lecture 1

Sampling Distribution

The first thing to notice is that the mean of the sampling distribution is equal to the true underlying
mean. The second thing to notice is that the width of our sampling distribution is now narrower
than what it was before when we only had a single observation. This makes sense. A value of y1
that is extreme in one direction is, on average, more likely to be paired with a value of y2 that is less
extreme in that direction, and so the averages will have less extreme values. Finally, you will notice
that the sampling distribution also looks normal. In this particular case the sampling distribution is
actually normal but for other problems it might not be so, although often it’s close enough that it’s
safe to treat it as normal.
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Lecture 1

Sampling Distribution

If we had three observations then our sampling distribution gets even narrower. Again, this is what
we would like to see; as we collect more data the variability in our estimate should go down, and
with very large sample sizes the variance becomes so small that from a practical perspective the
estimate is equal to the true value.
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Lecture 1

Sampling Distribution

For the mean of a normal distribution (µD) the ML estimate (µ̂D) is the mean of the data ȳ . This

estimator is unbiased because the expected value of the estimate E [µ̂D ] is equal to the true value.
The mean of the dashed distribution (the sampling distribution) is equal to the mean of the true
data distribution (the black line - don’t forget at this point we are assuming our ML estimate of the
distribution is the true distribution).
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Sampling Distribution

The variance of the estimator - the sampling variance - is equal to the true underlying variance of
the data distribution divided by the number of observations n used to obtain the estimate. The
problem of course is that we don’t know the true underlying variance and so what we have to do
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is replace it with an estimate - in this case our maximum likelihood estimate - to get an approximate
sampling variance.
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Sampling Distribution

So the sampling variance for the true underlying mean score of grumpy photos is approximately our
estimate of the variance (2.27) divided through by 22: 0.10. So the sampling variation is reasonably
small.
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Sampling Distribution versus Posterior Distribution

This is the posterior distribution for the mean of the distribution describing the scores of grumpy
photos. We saw it earlier - and I noted that it has a very easy interpretation; it describes our
epistemic uncertainty about the true value.
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Sampling Distribution versus Posterior Distribution

As the amount of data increases the sampling distribution converges on the posterior distribution,
and even with a modest sample size we can see
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Sampling Distribution versus Posterior Distribution

that the two largely agree in this instance if we make the prior vague. And so I think that although
sampling distributions and posterior distributions are fundamentally different things I think it is OK
to think about sampling distributions in this straightforward way.
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Sampling Distribution tends to a Normal

Another property of sampling distributions is that as the amount of information in the data about a
parameter increases they tend to normal distributions. In some cases they may do so quite slowly,
but often they can be safely treated as such. It’s also important to realise that this will happen even
if the data aren’t normally distributed. For example, lets imagine we were trying to estimate the
probability of flipping a head from this coin (rather than assuming it’s 0.5). If we flipped it once
the outcome could either be a tail in which case our best estimate of the probability would be 0 or
it could be a head in which case our best estimate of the probability would be 1.
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Sampling Distribution tends to a Normal

If the coin was in reality fair, then the sampling distribution would look like this. Half the time we
would estimate 0 and half the time we would estimate 1. The estimator is unbiased - the average
of the estimates would be 0.5, but the distribution is far from being Gaussian - it just has two point
masses (i.e. two values where the probability is non-zero).
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Sampling Distribution tends to a Normal

If we flipped the coin twice we have three possible outcomes (0,1, or 2 heads) and therefore three
possible estimates (0, 1/2 or 1).
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Sampling Distribution tends to a Normal

With three flips we have four possible estimates (0, 1/3, 2/3 or 1).
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and so on
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And you can see that even when our data are far from normal (for example, either zero’s or ones)
the sampling distribution of an underlying parameter (the probability of flipping a head) starts to
look normal pretty rapidly
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and this is thanks to the central limit theorem; once you take the average of many numbers the
distribution of those averages tend to a normal distribution even if the underlying numbers have a
wacky distribution, such as zero or one as here,



Uncertainty and Distributions: mini-quiz

Uncertainty

A rabid birdwatcher is chopping the heads off half the cats they meet.

aleatoric:

what is the probability a cat they meet will die?

epistemic:

what is the probability the cat they met is dead?

Distributions

They’ve given 10 cats polonium, 8 are dead.

posterior:

what is the probability (p) a cat will die after polonium?

sampling:

The home office has let them redo the experiment a gazzilian times.
In how many experiments did 3 out of 10 cats die?

data:

They have 10 trials and ’success’ with probability p.
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Uncertainty and Distributions: mini-quiz

We’ve covered quite a bit of ground so far, and it has been fairly abstract, so lets just recap on the
key points we’ve learnt.
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Uncertainty and Distributions: mini-quiz

The first thing that we had to get straight in our heads is that when we use the word uncertainty
or probability we’re actually talking about two separate things and it’s easy to get confused. We
have aleatoric uncertainty which is the type of uncertainty that comes with rolling a dice or tossing
a coin, and there’s epistemic uncertainty which is to do with knowledge.

Now, birdwatchers tend not to like cats much (or dogs)
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Uncertainty and Distributions: mini-quiz

and I’m sorry to tell you that a particularly rabid birdwatcher has been chopping the heads off half
the cats they meet.
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Uncertainty and Distributions: mini-quiz

Here are two questions. What type of uncertainty do you think these questions are concerned with?

Q1 is aleatoric and Q2 is epistemic; it is the same as the coin example I gave earlier. Q1 is referring
to something that might happen hypothetically and we know that the probability of it being actual
is 0.5. Q2 is referring to something that has happened (the cat is either dead or alive) and the
uncertainty is because you haven’t seen the headless (or headed) cat.
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Uncertainty and Distributions: mini-quiz

The other thing we covered is distributions, and in particular three types of distribution. The data
distribution, which is the distribution from which our observations arose. The posterior distribution
which characterises our epistemic uncertainty about something (often a parameter) and the sampling
distribution. The sampling distribution is the hardest; it is the distribution of our estimates had we
repeated our experiment a very large number of times.
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Uncertainty and Distributions: mini-quiz

Now the head chopping got boring so the birdwatcher also gave 10 cats polonim to see what would
happen. 8 died.
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Uncertainty and Distributions: mini-quiz

Here are three more questions/statements. What type of distribution do you think I’m talking about?
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Uncertainty and Distributions: mini-quiz

Uncertainty Questions:
Q1 is aleatoric and Q2 is epistemic; it is the same as the coin example I gave earlier. Q1 is referring
to something that might happen hypothetically and we know that the probability of it being actual
is 0.5. Q2 is referring to something that has happened (the cat is either dead or alive) and the
uncertainty is because you haven’t seen the headless (or headed) cat.
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Uncertainty and Distributions: mini-quiz

Distribution Questions: Q1 posterior distribution, Q2 sampling distribution and Q3 data distribution.

Q1 is about the posterior because we’re talking directly about the (epistemic) uncertainty of an
unknown parameter. Q2 is a sampling distribution as it describes the distribution of the estimates
of the probability in hypothetical reruns of the experiment. In experiments where 3/10 cats die,
the best (maximum likelihood) estimate (p̂) is 0.3 and the probability of this happening is equal to
its frequency when rerunning the experiment. Statement 3 describes the binomial distribution from
which our data arise.



lm

µ̂D = 5.376 σ̂2
D = 2.266 Var[µ̂D ] = 0.103

σ̂D = 1.505 SD[µ̂D ] = 0.321

> photo_m1 <- lm(y ~ 1, data = subset(photo_long,

+ type == "grumpy"))

> summary(photo_m1)

Residuals:

Min 1Q Median 3Q Max

-3.196 -1.173 -0.089 1.105 2.682

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.3759 0.3209 16.75 1.25e-13 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.505 on 21 degrees of freedom
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lm

OK - so we’ve obtained our maximum likelihood estimators: our best estimate of the mean grumpi-
ness score for grumpy photos is 5.4 and our best estimate of the variance in grumpiness score for
grumpy photos is around 2.3. And we estimated the sampling variance of our estimate (for the
mean) as 0.10. It’s often easier to think about standard deviations rather than variances
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lm

so we can just take the square root of these quantities. If the data distribution was normal and
these estimates were the actual values then approximately 70% of data points are going to lie
within one standard deviation of the mean (5.38±1.51; so somewhere between 3.87 and 6.88) and
approximately 95% are going to lie within two standard deviations of the mean; so somewhere
between 5.38±2×1.51 (so somewhere between 2.37 and 8.39). Likewise, our best estimate of the
mean of our data distribution is the maximum likelihood estimator (5.38) and it is unlikely that the
true underlying mean is going to lie further than two sampling standard deviations from this number
(5.38±2×0.32; so somewhere between 4.73 and 6.02).

I didn’t show you how we found the parameters of the data distribution that maximise the probability
of seeing the data (the maximum likelihood estimate) and I don’t think it is necessary for you to
understand optimisation algorithms.
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lm

However, fitting a linear model to the data finds the maximum likelihood estimates under the
assumption that the data distribution is normal (also known as Gaussian). So people should be
familiar with this bit of R-code. The function lm fits a linear model. The first argument is a formula
that specifies the model. We start by specifying the response variable (in our case y) followed by a
tilde (∼). The tilde is often used as shorthand for ‘is distributed as’. On the right-hand side of the
formula we specify how we would like the mean of our normal distribution to change. We’ll cover
this in more detail later, but in this model I’ve simply put a one. In R a 1 in a model formula stands
for the intercept. It is the mean value of the response variable you would expect if all other predictor
variables were set to zero. In this model we don’t have any other predictor variables so the intercept
is simply the mean response. We’ve also sub-setted our data so we are only analysing those photos
that were made under grumpy conditions.
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lm

If you are not used to the output it’s a little bewildering; and whether you are used to it not, there’s
these little stars to drag your attention away from the more important stuff. You can see that the
estimate of the intercept coincides with our maximum likelihood estimate of it, and our estimate
of the standard deviation is equal to what is called the residual standard error. It’s a shame they
call it a standard error; it is the standard deviation of the residuals (the standard deviation of the
data around their expected values). Finally we have our sampling standard deviation of our mean
estimate, which is usually referred to as the standard error.
There’s also a few other bits of information. We have a rough summary of how the residuals are
distributed and we have a t-value followed by a p-value. Lets focus on the residuals first.



lm: Residuals

> summary(photo_m1)

Residuals:

Min 1Q Median 3Q Max

-3.196 -1.173 -0.089 1.105 2.682

Quantile Function

> qnorm(1/4, 0, sd.hat)

[1] -1.015226

Cumulative Distribution Function

> pnorm(-1.05226, 0, sd.hat)

[1] 0.25
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lm: Residuals

This is some basic summary information about the distribution of the residuals; the minimum, median
and maximum values which you will be familiar with, but also the first and third quartiles.
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lm: Residuals

These are our data
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lm: Residuals

And this is our maximum likelihood estimate of the mean. The residuals are deviations from this
line and will have a mean of exactly zero by construction.
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lm: Residuals

Here we have the deviations - the residuals.
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lm: Residuals

If we sort our residuals, the first quartile is the point at which we have seen 25% of them, the median
is the point at which we have seen half the residuals (the second quartile) and the third quartile
is the point at which we have seen 75% of the residuals. Because we’ve assumed the residuals are
normal, and the normal is symmetric, we would want the median to be close to zero and we’d like
the quartiles to be roughly the same but opposite in sign. It would be nice if this was also true of
the minima and maxima but these are often quite noisy and even quite different values might still be
consistent with a normal distribution. This summary of the residual distribution is not very useful I
think; I’d be amazed if many people even bothered to look at it.
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lm: Residuals

It’s much easier to assess graphically whether the residuals look close to being normal or not. This
is our maxmimum likelihood estimate for the distribution of the residuals; it has a mean of zero and
a variance equal to our estimate 2.27. What we can do is say if our data really were generated from
this distribution where do we expect the 1st, 2nd and 3rd quartiles to be? As I mentioned before
the area under this curves equals 1, and so what we could do is chop it up into four regions of equal
volume, within each of which we expect a quarter of our residuals to lie.
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Lecture 1

lm: Residuals

If we do that for our model it looks pretty good: the three places where we expect to chop the
distribution in four are pretty close to the empirical quartiles.
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lm: Residuals

If we want to find the number below which we should have seen x% of the data we use the quantile
function. So to get the first quartile I specify a probability of a quarter and it returns the value below
which 25% of the data should lie (here sd_hat is the estimate of the residual standard deviation -
1.505).
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lm: Residuals

The inverse of the quantile function is called the cumulative density function (or cumulative mass
function if the outcome is discrete) and here we give it some value and it tells us what is the probability
of an observation being smaller than this. These are super useful functions. Now assessing whether
the residuals are consistent with a normal by just looking at these three numbers is a pretty blunt
diagnostic. For example,
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lm: Residuals

These residuals have the same quartiles and range as our original residuals but clearly they do not
conform very well to the normal.
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lm: Residuals

If we take our original data, what we can do
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lm: Residuals

is divide the distribution up into as many data points we have (in this case 22) and split our
estimated distribution up into 22 equally sized areas and see if the expected quantiles coincide with
the residuals.
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> plot(photo_m1, 2)
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Lecture 1

lm

This is a called a quantile plot or a qq-plot. On the x-axis we have the theoretical quantiles; the
places where we think we should cut the distribution into 22 pieces and on the y-axis we have the

actual residuals from our model[1]. We can see that the points are lying pretty much on the 1:1 line[2]

indicating that what we expect from the normal distribution is pretty much what we see. There’s a
little bit of deviation at the extremes, but that is normal. Extreme values tend to be quite noisy.

[1] Note that the residuals have been standardized (divided by the residual standard deviation in this
instance) and so the theoretical distribution is the unit normal (mean of zero and standard deviation

of 1). This is because Var(cx) where c is a constant is equal to c2Var(x). If c = 1/σ (i.e. we

divide x by its standard deviation) we get Var(x/σ) = Var(x)/σ2 = σ2/σ2 = 1.

[2] Note that the dashed diagonal line is NOT the 1:1 line, but a line going through the pair of points
at the first and third quantile. This can be very misleading in some models we’ll cover later (e.g.
overdispersion in a Poisson model) and it’s not clear to me whey the 1:1 line is not plotted.



lm: Confidence Intervals

> coef(summary(photo_m1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.375865 0.3209046 16.75222 1.254999e-13

> confint(photo_m1)

2.5 % 97.5 %

(Intercept) 4.708507 6.043222

> qnorm(c(0.025, 0.975),

+ mean = mu.hat, sd = mu.se)

[1] 4.746904 6.004826

> qt.scaled(c(0.025, 0.975),

+ mean = mu.hat, sd = mu.se,

+ df = 22 - 1)

[1] 4.708507 6.043222
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lm: Confidence Intervals

After a summary of the residuals we get the coefficient table. We’ve got our maximum likelihood
estimate of the mean, we’ve got the standard deviation of the sampling distribution (the standard
error) and then we’ve got a t-value and some odd symbol (Pr(>|t|)) that designates something
you’re probably not too sure about but you do know this is the beloved p-value.
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lm: Confidence Intervals

We can plot the sampling distribution around our estimate since we know the mean (the estimate)
and the standard deviation (the standard error) and we also saw earlier that the sampling distribution
of our mean will be normal.
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lm: Confidence Intervals

We could also find the 2.5% and 97.5% quantiles of our sampling distribution.
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lm: Confidence Intervals

These are the values in which we expect 95% of the estimates to lie had we repeated the experiment
and if our estimate was the true value. We’ve also made sure that the two tails contain the same
amount of probability. Conversely,
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lm: Confidence Intervals

We expect 5% of the estimates to lie outside this region, with half of them in the lower tail and half
of them in the upper tail. This interval you will be familiar with, it’s the 95% confidence interval
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and we can simply use the R function confint to obtain it. We can also do it ‘by hand’
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by using the quantile function we used before: so we can work out the value under which the lower
2.5% of estimates should lie, and the value under which the lower 97.5% of estimates should lie.
And .... Oh dear .... close but not the same. The interval we have worked out by hand is slightly
tighter. The reason for this is that I lied to you. I told you that the sampling distribution of the mean
of a normal distribution was itself normal. However, that is only true if we know the variance of the
data distribution. But we don’t know it: when we were calculating the standard error I replaced the

true data variance σ2
D with its estimate σ̂2

D and told you not to worry about it. Now if by chance
our estimate of the data variance was too small, then the variance of the sampling distribution (the
width of the pictured distribution) should really have been larger, and if by chance our estimate of
the data variance was too large, then the variance of the sampling distribution is actually a little bit
smaller than we’ve pictured here. We could imagine having a series of normal sampling distributions
all with the same mean but a range of plausible standard deviations.
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lm: Confidence Intervals

If we blended these different plausible sampling distributions (a blended distribution is called a com-
pound or mixture distribution) then we would end up with a new sampling distribution represented
by this new dotted line. You probably didn’t notice the difference but if you look carefully you will
see that our new distribution has slightly higher density at extreme values - it has fatter tails (the
red hatched area is consistently below the new density function). This new blended distribution is

called a t-distribution.[1]

[1] Actually this is a mean-shifted and scaled t-distribution. The standard t-distribution has only one
parameter - the degrees of freedom, often denoted ν. It has a mean of 0 and standard deviation

of
√

ν/(ν − 2). Mean-shifting just means we shift the distribution to a new mean (specified by

mean in the t.scaled family of functions available in the library metRology) and we scale it by

a parameter s such that the new standard deviation is s
√

ν/(ν − 2) (s is specified as sd in the

t.scaled family of functions, but this invites confusion because this is not the standard deviation
of the distribution). An alternative way to think about it is if X is a t-distributed random variable,
then sX + mean has a mean-shifted and scaled t-distribution.
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lm: Confidence Intervals

What we can do is recalculate the 2.5% and 97.5% quantiles for this new distribution, so work out
where these lines need to be so each tail contains 2.5% of the probability. Again, you probably
didn’t even notice the slight shift in the quantiles to more extreme values. We can also work it out
‘by hand’ so we can feel confident that we understand what the confint function is telling us.
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lm: Confidence Intervals

And it gives us the expected answer. The function takes the same arguments as before, the estimate
and its standard error, but also requires us to specify the degrees of freedom. As you will see when
we move on to mixed models, it’s sometimes hard to know what the degrees of freedom are, but in a
simple model like this it is simply the number of observations used to estimate the residual variance
minus the number of location parameters in the model (in this case 1, the intercept).
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lm: Hypothesis Testing

The next thing to understand is the t value and the p value.
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Here I’ve plotted our estimate of the mean and its sampling distribution, which as we saw is a scaled
and mean-shifted t-distribution.
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lm: Hypothesis Testing

The estimate of the mean of a normal distribution has the nice property that the sampling distribution
around the true mean would be the same no matter what the underlying true mean is. So for example
if the true mean was zero the sampling distribution would look the same, just displaced. We could
then ask, if zero really was the true mean (our null hypothesis) how likely is it that we would have
obtained an estimate as far from zero as we did?
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And the answer is we can just look to see how much probability there is in this tail. I’ve coloured
the area in red, but because the probability is low you can barely see it.
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We can use the cumulative density function of the scaled t-distribution to evaluate this probability.
we pass it our estimate and it tells us how likely we are to get a value less than this, so we need to
one minus this number.
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This is what we call a one-tailed test. We have asked what is the probability of getting an estimate
larger than this had the true value been zero.
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However, what would have happened had we got the same estimate but opposite in sign?



lm: Hypothesis Testing

> coef(summary(photo_m1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.375865 0.3209046 16.75222 1.254999e-13

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

µD

D
en

si
ty

µD− µD

One-tailed t-test

> 1 - pt.scaled(mu.hat, mean = 0,

+ sd = mu.se, df = 22 - 1)

[1] 6.27276e-14

> pt.scaled(-mu.hat, mean = 0,

+ sd = mu.se, df = 22 - 1)

[1] 6.274995e-14

Two-tailed t-test

> mu.t <- abs(mu.hat/mu.se)

> 2 * (1 - pt(mu.t, df = 22 - 1))

[1] 1.254552e-13

Jarrod Hadfield Lecture 1

lm: Hypothesis Testing

> coef(summary(photo_m1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.375865 0.3209046 16.75222 1.254999e-13

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

µD

D
en

si
ty

µD− µD

One-tailed t-test

> 1 - pt.scaled(mu.hat, mean = 0,

+ sd = mu.se, df = 22 - 1)

[1] 6.27276e-14

> pt.scaled(-mu.hat, mean = 0,

+ sd = mu.se, df = 22 - 1)

[1] 6.274995e-14

Two-tailed t-test

> mu.t <- abs(mu.hat/mu.se)

> 2 * (1 - pt(mu.t, df = 22 - 1))

[1] 1.254552e-13

2
0
2
4
-0
2
-1
9

Lecture 1

lm: Hypothesis Testing

The t-distribution is symmetric so the probability getting an estimate that is more negative then
this, is the same as our previous probability - this area in red.
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lm: Hypothesis Testing

And we can simply get this number by asking what is the probability of getting an estimate less
than the negative of our estimate.
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lm: Hypothesis Testing

Most people don’t want to rule out the possibility that deviations in either direction, positive or
negative, are biologically plausible and interesting. Consequently, two-tailed tests are used to obtain
the probability of getting an estimate larger in magnitude than the one that was obtained had the
true value been zero. The two tailed probability is simply the sum of these one-tailed probabilities.

You might not have come across the use of a scaled mean-shifted t-distribution before.
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lm: Hypothesis Testing

This is because people usually work with a t-value; the absolute value of the estimate divided by
the standard error. Under the null hypothesis (the true parameter value is zero) the t-value is also
expected to have a mean of zero (it is not mean shifted) and also, dividing by the standard error
results in a standard (unscaled) t-distribution.
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lm: Hypothesis Testing

We can then just use the cumulative density function of the standard t-distribution.
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> photo_m2 <- lm(y ~ -1, data = subset(photo_long,

+ type == "grumpy"))

> logLik(photo_m2)

'log Lik.' -69.01266 (df=1)
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lm: Hypothesis Testing

When the data are Gaussian and independent (conditional on the predictors) the assumptions of
lm are met and the t-test is exact. However, in many circumstances we do not know what the
sampling distribution is, not even under the null hypothesis. As a consequence we need approximate
alternatives that work well.
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lm: Hypothesis Testing

Replacing the t distribution with a normal distribution, as we did when first calculating the confidence
intervals by hand, is one possibility and in many cases it works well. In the case of null-hypothesis
testing it is called a z-test. Here we take our t-value (although now we call it a z-value to confuse
things) and we ask how likely is it to get a z-value this large or larger in magnitude if the null
hypothesis is true. Again, because our null hypothesis is a value of zero the sampling distribution
has a mean of zero, and because we have divided through by the standard error (the scale of the
sampling distribution) the variance is one. In this case we don’t need to specify the mean and
variance in the call to pnorm because these are the default values. The normal distribution with a
mean of zero and variance (and standard deviation) of one is known as the unit normal.
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lm: Hypothesis Testing

You can see that the normal approximation to the sampling distribution also works well in a hypothesis
testing framework. Here I’ve taken a range of t-values from around 5 down to zero and calculated
the p-value using a t-test (x-axis) and a z-test (y-axis) and plotted them in black. The z-test is
slightly anti-conservative - the red dashed line is the 1:1 line - and so for a given p-value obtained
under the t-test, the p-value under the z-test is always smaller. But the difference is small even
given the fact that the size of our data set is modest (21 degrees of freedom).
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lm: Hypothesis Testing

Another possibility is to consider the likelihood of the data. This is the log-likelihood of the model,
and you can see it also prints the degrees of freedom. This degrees of freedom is different from the
one you saw before. It is simply the number of parameters in the model, both location parameters
(the intercept in this model) and also the variance parameters (the residual variance in this model).
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lm: Hypothesis Testing

What we could do is fit our null model to our data. In this case our null model is that the mean
is exactly zero. In R you can specify that you do not want an intercept by ’removing’ the intercept
using a minus sign.
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lm: Hypothesis Testing

We can then get the log-likelihood of this new model. We can see that the likelihood under our new,
null, model is considerably less. The question is, is it significantly less? As we noted earlier, as you
increase the number of parameters the likelihood has to go up. In this instance we are comparing a
two parameter model with a one parameter model (the variance is still being estimated) and so the
question is how much do we expect the likelihood to go up by just by chance?
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Likelihood Ratio Test

> LR2 <- 2 * (logLik(photo_m1) -

+ logLik(photo_m2))

> 1 - pchisq(LR2, df = 1)

'log Lik.' 1.909584e-14 (df=2)

> anova(photo_m1, photo_m2, test = "LRT")

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 22 683.37

2 21 47.58 1 635.8 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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lm: Hypothesis Testing

Understanding how much the likelihood should increase just by chance is the basis for something
called the likelihood ratio test. The main quantity is the change in the log-likelihood between the
two models doubled.
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lm: Hypothesis Testing

What I have done to generate this figure is simulated data according to our null model (photo_m2)
where the mean is 0 and the residual variance was estimated to be 31.1 (the variance is so large
because the residuals are now the difference between the data and 0 rather than their sample mean).
I’ve then refitted the null model to the simulated data set and extracted the log-likelihood, and then
refitted the alternative model (photo_m1) to the data set (where the estimate of the mean is allowed
to be different from zero) and calculated twice the difference in the log-likelihood. I’ve done this for
many simulated data sets and presented the results as a histogram. In most cases the log-likelihood
is changing by less than one unit, but there is a reasonable probability of getting changes in the
log-likelihood of 2 or more (i.e. LR2>4).
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lm: Hypothesis Testing

This red line is the density of a chi-squared distribution with one degree of freedom. I’ve used one
degree of freedom because that’s the difference in the number of parameters between the models.
You can see it seems to fit our empirical distribution rather well, and actually as the information in
the data about the parameter goes up (as sample size increases) we know that this distribution will
really follow a chi-sqaured distribution. We can then ask how likely are we to see the increase in
likelihood that we actually saw had the underlying mean actually been zero?
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lm: Hypothesis Testing

Again we can take our observed value (LR2=58.6) and ask what is the probability that the change
in likelihood exceeds this? Note that this is a one-tailed test. If we add more parameters to the
model the likelihood has to go up, so we are only interested in whether it is possible to get a change
in likelihood greater than what we observed.



lm: Hypothesis Testing
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> LR2 <- 2 * (logLik(photo_m1) -

+ logLik(photo_m2))

> 1 - pchisq(LR2, df = 1)

'log Lik.' 1.909584e-14 (df=2)

> anova(photo_m1, photo_m2, test = "LRT")

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 22 683.37

2 21 47.58 1 635.8 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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lm: Hypothesis Testing

We can do this in R by comparing our models using anova and specifying test="LRT". There’s
actually a slight discrepancy here. We haven’t really got the time to understand why this discrepancy
exists, and for practical purposes I don’t think it is important, so I ’m going to skip it.



Summary

Distributions

Data Distribution - probability of data.
Sampling Distribution - probability of estimates.
Posterior Distribution - probability (epistemic) of parameter values.

Distribution Functions

Mass/Density - (proportional to the) probability that X = x .
Cumulative Density/Mass - probability that X ≤ x .
Quantile - Opposite of Cumulative: return probability given x .

Inference

Maximum Likelihood (ML) - choose parameters that maximise the
probability of the data given the model.
If the data are Gaussian we have the linear model.

Sampling distribution of location parameters are t-distributed (close
to Gaussian in many cases).
Hypothesis testing with t-test (close to z-test in many cases).

Likelihood ratio test for general hypothesis testing under ML.
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